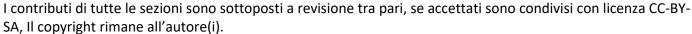
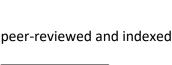

ISSN 2784-9473 (online)

Bollettino della Società Italiana di Fotogrammetria e Topografia


ISSN 1721-971X & ISSN 2784-9473 (online)

Direttore responsabile | Chief Editor


Prof. Andrea Maria Lingua

Segreteria di Redazione | Publishing Editor

e-mail: redazione@sifet.org

All the editorial sections are open submissions, peer-reviewed and indexed, copyright remains with the author(s).

A photogrammetry application to rockfall monitoring: the Belca, Slovenia case study Alessandro La Rocca, Andrea Maria Lingua, Dejan Grigillio 1-14

In the 700th anniversary of Dante's death: the geomatics of the Comedy Francesco Fiermonte, Marco Gnemmi, Luigi Mussio 15-34

UN'APPLICAZIONE DELLA FOTOGRAMMETRIA AL MONITORAGGIO DI UNA FRANA IN ROCCIA; IL CASO STUDIO DI BELCA, SLOVENIA

A PHOTOGRAMMETRY APPLICATION TO ROCKFALL MONITORING: THE BELCA, SLOVENIA CASE STUDY

A. La Rocca^a, A. M. Lingua^b, D. Grigillio^c

^a alessandro.larocca@hotmail.it

^b Politecnico di Torino, DIATI, corso Duca degli Abruzzi 24, andrea.lingua@polito.it ^c University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova cesta 2, dejan.grigillo@fgg.uni-lj.si

PAROLE CHIAVE: Fotogrammetria, UAV, comparazione tra nuvole di punti, stima dei volumi

KEY WORDS: Photogrammetry, UAV, cloud-to-cloud comparison, volume estimation

RIASSUNTO

La fotogrammetria aerea mediante uso di droni offre una metodologia efficace ed economica per ricostruire la geomorfologia del territorio. Lo scopo di questo studio è l'applicazione di un generico flusso di lavoro basato sulla Structure-from-Motion per elaborare adeguatamente diversi set di immagini multi-temporali per rilevare le variazioni di superficie e di volume attraverso il confronto di diverse nuvole di punti. La complessa geomorfologia del sito di interesse, caratterizzata da nicchie, asperità, pareti rocciose piatte con diverso orientamento, depositi di detriti e blocchi rocciosi isolati, rende più difficile l'accurata riproiezione dei punti dell'immagine in uno spazio 3D. Il confronto cronologico delle nuvole di punti offre una stima qualitativa e quantitativa delle distanze e delle variazioni di volume tra modelli cronologicamente sequenziali. Per il calcolo della distanza da nuvola, è stato stimato un livello di precisione che tiene conto di diverse fonti di incertezza (precisione nominale singola superficie, comparazione tra superfici multitemporali, rumori di misura dovuti a vegetazione e quant'altro)..

Per questo studio erano disponibili sette diversi set di dati, acquisiti da due diverse facoltà dell'Università di Lubiana, la Facoltà di Biotecnologia e Facoltà di Ingegneria Civile e Geodetica. I rilievi topografici e i voli fotogrammetrici sono stati eseguiti con approcci diversi, portando a una diversa accuratezza nella ricostruzione finale del terreno. L'elaborazione dei dati è stata eseguita con le ultime versioni del software Agisoft Metashape e CloudCompare.

ABSTRACT

UAV photogrammetry offers a powerful and cheap methodology to reconstruct the terrain geomorphology. The purpose of this study is the application of a generic Structure-from-Motion workflow to properly elaborate different set of images from multitemporal surveys to perform a surface and volume change detection by meaning of a cloud-to-cloud comparison. The complex geomorphology of the site of interest, characterized by niches, asperities, flat rock walls with different orientation, debris deposits and isolated rock blocks, challenges the accurate reprojection of the image points into a 3D space. The chronological comparison of the point cloud offers a qualitative and quantitative estimation of distances and volume change between sequential models. For the cloud-to-cloud distance computation, a level of accuracy accounting for different sources of uncertainty was estimated (nominal precision of each surface, multitemporal comparison between different surfaces with different level of accuracy, noise due to vegetation and other local couses, ...).

Seven data sets were available for this study and they were acquired by two different faculties of the University of Ljubljana, Biotechnical Faculty and Faculty of Civil and Geodetic Engineering. Some of the surveys and some of the drone flights were performed with different approaches, leading to different accuracy in the final reconstruction of the terrain. The data processing has been performed with the latest versions of Agisoft Metashape and CloudCompare software.

1. INTRODUZIONE

Il rilievo e il monitoraggio dello spostamento di pendii instabili è una questione cruciale per la prevenzione e la valutazione del rischio e della vulnerabilità.

Le tecniche di telerilevamento e fotogrammetria sono strumenti efficaci per ottenere rapidamente informazioni distribuite nello spazio sulla cinematica delle frane (Delacourt et al. 2007) e possono essere operative da piattaforme spaziali, aeree e terrestri. Il principale vantaggio di questi dati è la capacità di acquisire dati spazialmente continui, anche con precisione centimetrica, che possono essere molto utili quando devono essere integrati con le tecniche convenzionali a terra (Tofani et al. 2013).

Tuttavia, l'uso di piattaforme aeree e satellitari evidenzia alcuni inconvenienti, principalmente associati ai costi elevati e alla sfida logistica di condurre indagini ripetute in breve tempo.

Nell'ultimo decennio, un rapido e consistente sviluppo di piccoli sistemi UAV (veicoli aerei senza pilota) per uso civile ad alte prestazioni e basso costo, insieme a un rapido sviluppo di nuovi sensori migliorati in termini di efficacia e miniaturizzazione, ha aperto interessanti scenari nell'uso di tecniche convenzionali di fotogrammetria per la modellazione e il monitoraggio delle superfici (Eisenbeiss et al., 2011). Come mezzo importante per ottenere dati distribuiti spazialmente, la fotogrammetria da UAV presenta i seguenti vantaggi: applicabilità in tempo quasi-reale, pianificazione flessibile dell'indagine, alta risoluzione, basso

costo e può raccogliere informazioni in ambienti pericolosi senza rischi (Chang-Chun et al.2011, Chiabrando et al., 2013). La crescente diffusione degli UAV ha incoraggiato molte aziende a sviluppare sensori dedicati per queste piattaforme. Oltre alle tradizionali telecamere RGB, sono oggi disponibili sul mercato altri sensori per telecamere come i sensori termici e le telecamere multi e iper-spettrali (Giordan et al., 2017).

Il recente sviluppo di tecniche innovative di elaborazione delle immagini ottiche ha ulteriormente abbassato i costi per la rapida esecuzione di rilievi topografici ad alta risoluzione, precedentemente effettuati mediante sensori LiDAR aerei o terrestri molto costosi (Barbarella et al., 2015, Toschi et al., 2015, Bronzino et al., 2019). I rilievi topografici sono ora possibili attraverso il semplice utilizzo di un set di immagini aeree RGB combinate sfruttando algoritmi fotogrammetrici digitali.

La fotogrammetria digitale è una tecnica che consente la ricostruzione della topografia come modello 3D utilizzando algoritmi in grado di fornire informazioni spaziali 3D da caratteristiche ed elementi visibili in due o più immagini acquisite da diversi punti di vista (Aicardi et al., 2016), che una volta orientate e calibrate possono essere utilizzate per produrre nuvole di punti ad altissima definizione (Masiero et al., 2019), insieme a modelli di superficie digitale (DSM), ortofoto e rappresentazione 3D accurata degli oggetti o superfici. Questo processo viene generalmente eseguito utilizzando uno dei numerosi pacchetti software Structure-from-Motion (SfM, Westoby et al. 2012). Il tempo e l'economicità della tecnica consentono di ripetere i rilievi di misura a intervalli di tempo regolari per monitorare i cambiamenti avvenuti tra le diverse acquisizioni, confrontando i modelli digitali o le nuvole di punti risultanti, come dimostrato in bibliografia (Calantropio et al., 2018, Rossi, 2018, Balletti et al., 2014, Mancini et al, 2017).

Nel caso particolare qui discusso, tale tecnologia ha permesso di indagare l'evoluzione di una geomorfologia complessa, nonostante la difficile accessibilità al sito, dove sia il distacco dei blocchi che colate detritiche si verificano frequentemente. Sono stati verificati sul campo i principali vantaggi: la possibilità di ottenere una ricostruzione 3D di tale scena permette di descrivere meglio la geometria dell'area, e la facile ripetibilità dei voli permette di osservare l'evoluzione cronologica del versante.

2. DESCRIZIONE DEL SITO

L'area di studio è nella regione nord-occidentale della Slovenia, nell'Europa centrale. Si trova vicino al villaggio di Belca nel comune di Kranjska Gora, vicino al confine austriaco, a circa 60 km da Lubiana, la capitale slovena.

Il sito è prevalentemente caratterizzato da un ammasso roccioso fratturato su un pendio montuoso, al fondo del quale si sono depositati negli anni i detriti caduti, caratterizzati da una distribuzione granulometrica eterogenea. La valle è corta e stretta ed è attraversata da un piccolo torrente che sfocia nel fiume principale Sava. La maggior parte dei blocchi più grandi sono accumulati nel letto del torrente vicino al pendio; una porzione dei detriti depositatisi nell'alveo del torrente si immagina sia stato probabilmente trasportata a valle dalla corrente del fiume (*Figura I*).

Da un punto di vista geologico, il versante è costituito da rocce del Triassico superiore, principalmente dolomia massiccia di colore grigio chiaro e strati di calcare, fortemente tettonizzati. La pendenza è stata monitorata in seguito al verificarsi nel settembre 2014 un crollo dal volume complessivo di 5'000-10'000 m³. Dal 2014 al 2017, sia i dati geotecnici che quelli geologici sono stati acquisiti da Lazar et al. 2018: in particolare sono stati adottati estensimetri a filo, stazione totale, laser scanner terrestre (Terrestrial Laser Scanner, TLS) e aereo (Aerial Laser Scanner, ALS) per osservare l'evoluzione della versante.

3. ACQUISIZIONE DEI DATI

I dati per questo studio provengono da sette diverse indagini, cinque delle quali sono state eseguite da membri dell'Università di Lubiana, Facoltà di Ingegneria Civile e Geodetica (Fakulteta za gradbeništvo in geodezijo, FGG) e le restanti due sono state eseguite dal Dipartimento di Silvicoltura e Risorse Forestali Rinnovabili della Facoltà di Biotecnologia (Biotehinška Fakulteta, BF). Queste vanno da luglio 2018 a ottobre 2019.

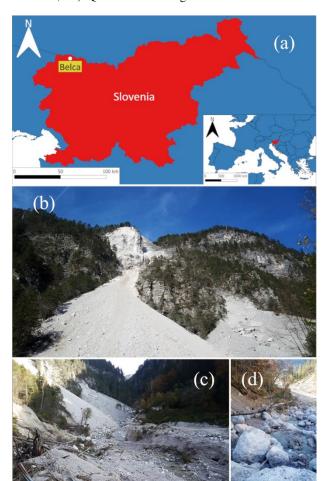


Figura 1. Ubicazione dell'area di studio (a) e alcune fotografie del versante (b) e dell'alveo del torrente (c, d).

L'area osservata è cambiata nelle prime investigazioni: dapprima è stata acquisita solo la parte alta dell'alveo, poi è stata osservata l'intera asta fluviale per rilevare l'eventuale trasporto del materiale distaccato e progressivamente l'attenzione si è spostata verso la porzione di fiume più vicina al versante.

I dati della BF sono stati acquisiti con un drone DJI Mavic Air con un modello di fotocamera FC2103, avente una lunghezza focale di 4,5 mm e restituendo immagini con una risoluzione di 4056x3040 pixel. I voli sono stati eseguiti adottando il pilotaggio manuale del drone, con immagini sostanzialmente nadirali effettuate con quote variabili in coerenza con le variazioni in quota del pendio.

I dati da FGG sono stati acquisiti con un DJI Phantom 4 con un modello di fotocamera FC6310, avente una lunghezza focale di 8,8 mm e immagini con una risoluzione di 5472x3648 pixel. I piani di volo sono cambiati da un'investigazione all'altra, imparando dalle esperienze precedenti. All'inizio era previsto un solo volo sia per il pendio che per il fiume. A causa della

complessa geomorfologia del versante, sono stati poi pianificati 3 voli con orientamento obliquo della camera (45°): i primi due sono stati eseguiti alla stessa quota, uno avente come riferimento un precedente DTM dell'area e l'altro avendo come riferimento un piano con un'inclinazione prossima alla pendenza del versante; il terzo volo è stato eseguito come il secondo ma con una quota di volo maggiore per garantire una più ampia sovrapposizione delle immagini. La presenza, inoltre, di blocchi isolati e nicchie ha richiesto alcuni voli specifici con camera orientata in direzioni specifiche.

Al fine di eseguire la georeferenziazione del modello finale, è stata misurata l'effettiva posizione di alcuni punti di controllo (*Ground Control Point*, GCP). Le misurazioni effettive della posizione dei *target* inseriti nella scena sono state eseguite secondo diversi metodi. Nei primi voli (BF e FGG) i GCP sono stati rilevato mediante GNSS-RTK (*Global Navigation Satellite System - Real-Time Kinematics*) con una precisioni raggiunte di 2 cm circa in planimetria e 4 cm circa in altimetria con punte di 8 cm, a causa di ostacoli presenti in loco (vegetazione, pendii scoscesi, ecc.). A causa di queste considerazioni nelle ultime epoche di acquisizione è stata adottata una combinazione tra stazione totale e GNSS, con uno scarto quadratico massimo di 2 cm sia in planimetria che in altimetria.

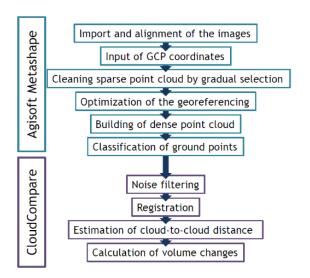


Figura 2. Flusso di lavoro adottato nell'elaborazione dei dati.

Il numero e la distribuzione dei *target* sono pertanto cambiati tra un'indagine e l'altra. Alcuni sono stati posizionati fuori dal corpo della frana: in alto, in basso, e alcuni ai lati del corpo principale, grazie alla presenza di una strada che attraversava il pendio prima di essere ricoperta dai detriti flusso. Infine, non tutti sono stati utilizzati come GCP o CP (*Check Point*) poiché a volte la differenza tra la posizione stimata e le coordinate di input era troppo grande o il numero di proiezioni ricorrenti tra le immagini era inferiore a 2.

4. ELABORAZIONE DEI DATI

L'elaborazione fotogrammetrica è stata effettuata utilizzando il software Agisoft Metashape Pro (AMP). Il flusso di lavoro nell'elaborazione fotogrammetrica è quello ormai consolidato (Figura 2, Westoby et al., 2012; Johnson et al., 2014; Passalacqua et al., 2015). Le comparazioni multitemporali sono state realizzate mediante un percorso metodologico sviluppato per approssimazioni successive fino alla definizione della procedura ottimale.

4.1 Importazione e orientamento delle immagini

L'orientamento relativo delle immagini in un unico sistema di coordinate immagine (allineamento delle immagini in Metashape) si basa sull'identificazione automatica dei punti chiave (key points) tra le immagini e sulla corrispondenza dei punti di legame (tie points) e quindi in questi contesti montani vegetati richiede una verifica approfondita per evitare errori grossolanoi locali.

Poiché ogni investigazione ha richiesto più di un volo, diversi set di immagini sono stati allineati in blocchi (*chunk*) separati, adottando l'impostazione precisione *High* in AMP (dimensione originale delle immagini senza sotto-campionamento).

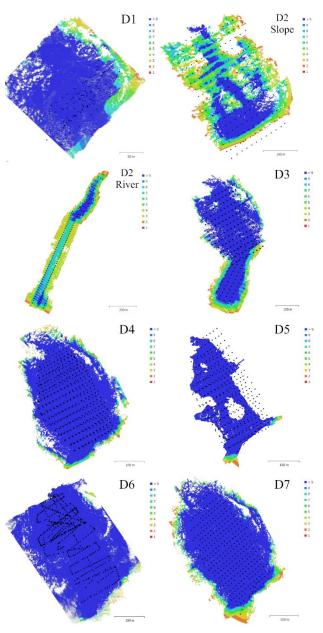


Figura 3. Nuvole di punti sparse: la scala di colori nella legenda indica il numero di immagini in cui è presente ogni punto; i punti neri, invece, indicano la posizione stimata della camera durante il rilievo.

Le immagini sono dotate di *geotag* (parametri di orientamento esterno approssimati direttamente definiti dal drone stesso) usati per eseguire una selezione preliminare delle immagini nella fase

di allineamento accelerando il processo di orientamento relativo. Il risultato è una nuvola di punti sparsa (*Figura 3*) che fornisce una prima ricostruzione tridimensionale approssimativa dell'area investigata.

Per poter garantire il raggiungimento di una precisione controllata, le osservazioni navigazionali direttamente acquisite dal drone sono state completate mediante una serie di punti di appoggio (GCP) visibili nelle immagini, che ha richiesto un giudizio critico da parte dell'operatore, il cui intervento è stato fondamentale per produrre un modello di alta qualità, soprattutto se si tratta di una geomorfologia complessa con la presenza di vegetazione (Bitelli et al., 2004).

Le coordinate dei punti in termini di nord, est e altitudine nel sistema di coordinate della Slovenia 1996 / Slovene National Grid (EPSG :: 3794) sono state quindi importate inserendo il valore di precisione derivato dalla compensazione delle misurazioni in loco (come indicato in precedenza).

Il modello orientato in modo relativo è stato quindi trasformato nel sistema di coordinate terreno stimando i 7 parametri di una rototraslazione spaziale con variazione di scala per tenere conto delle deformazioni cartografiche e legate alla quota) ed infine è stato svolta la compensazione del blocco a stelle proiettive mediante ottimizzazione dei parametri di orientamento esterno delle immagini e dei parametri di calibrazione interna della camera utilizzata (funzione *optimizing cameras* in AMP) al fine di ridurre al minimo la somma dell'errore di disallineamento delle coordinate di riferimento e l'errore di riproiezione durante la regolazione delle coordinate del punto stimato.

In questa fase, il processo ha richiesto una serie accortezze specifiche per filtrare oulier e gross errors all'interno del punti di legame determinati automaticamente (nuvola sparsa).

4.2 Pulizia delle nuvole di punti sparse attraverso la selezione graduale (gradual selection)

L'allineamento delle immagini potrebbe portare a errori sia lineari che non lineari nella ricostruzione della scena. Georeferenziare il modello introducendo le coordinate spaziali misurate dei GCP potrebbe compensare l'errore lineare, ma per correggere gli errori non lineari è necessario eseguire l'ottimizzazione dei parametri della camera. Questo è uno strumento utile e potente poiché influenza fortemente il risultato della georeferenziazione. Viene utilizzato ogni volta dopo aver modificato i GCP per cercare un possibile valore anomalo o selezionare il set appropriato di CP per verificare la qualità della georeferenziazione. Questo è il motivo per cui la nuvola di punti sparsa deve essere modificata: la stima dei parametri della camera e la qualità della riproiezione dipendono dalla presenza di punti di legame e di appoggio mal posizionati.

La selezione dei punti da rimuovere viene eseguita impostando una soglia per ciascuno di questi parametri: errore di riproiezione, incertezza di ricostruzione, conteggio delle immagini (*image count*, vedi manuale AMP) e accuratezza di proiezione. Per trovare il modo migliore per eseguire tale selezione, sono stati presi in considerazione diversi approcci al fine di ottenere una buona ricostruzione del modello 3D senza perdere troppi punti. Gli approcci adottati sono i seguenti:

• CLEAN 0: questo metodo è il più semplice e si basa su un'applicazione nel settore dell'analisi sui beni archeologici e culturali di Mallison H., 2015. Come soglia è stato fissato un valore dell'80-90% dell'errore massimo di riproiezione: punti aventi valore maggiore sono stati rimossi. In caso dell'incertezza di ricostruzione e dell'errore di proiezione, è stata fissata una soglia che permette di ottenere questo risultato. Terminata la rimozione dei punti, l'ottimizzazione delle telecamere è stata nuovamente eseguita.

- CLEAN 1A: questo metodo introduce il principio di impostare il valore di soglia in modo da ottenere una selezione del 5-10% dei punti della nuvola sparsa, poiché il precedente approccio a volte portava a una selezione di punti molto piccola o molto grande. La sequenza dei parametri adottati nella selezione graduale e le opzioni nell'ottimizzazione delle telecamere sono state mantenute inalterate.
- CLEAN 1B: questo approccio mescola i metodi CLEAN 1A e CLEAN 2. L'ordine dei parametri utilizzati nella selezione graduale e il principio di soglia del 5-10% sono stati mantenuti invariati. Dopo aver rimosso i punti selezionati, i parametri della camera sono stati ottimizzati di volta in volta: in caso di incertezza di ricostruzione e precisione di proiezione, sono stati considerati tutti i parametri della camera.
- CLEAN 2: questo metodo si basa sul corso di formazione introduttivo in Unmanned Aircraft Systems Data Post-Processing proposto dallo United States Geological Survey (USGS, 2016), l'agenzia scientifica per lo studio del suolo del Dipartimento dell'Interno degli Stati Uniti d'America. Questo è il metodo più complesso adottato, ma trova la sua applicazione nella ricostruzione di un modello del terreno da rilievi aerei, quindi più vicino a questo studio. La sequenza dei parametri utilizzati nella selezione graduale è cambiata e dopo aver rimosso i punti selezionati è stata eseguita l'ottimizzazione delle telecamere selezionando tutti i parametri della camera per le selezioni in base alla precisione di proiezione e all'errore di riproiezione. Le selezioni basate sull'incertezza della ricostruzione e sull'accuratezza della proiezione sono state eseguite due volte. Anche in questo caso è stato adottato il principio della soglia del 5-10%.

Il conteggio delle immagini non è stato considerato in nessuno dei metodi e per nessuno dei set di dati, poiché l'impostazione di un numero di soglia immediatamente inferiore al valore dato (3) avrebbe selezionato un numero molto elevato di punti, vicino al 50%. Questo processo avrebbe rimosso infatti quei punti che sono presenti solo in 2 immagini, ma avrebbe fortemente influenzato la caratterizzazione del pendio e la qualità del modello finale.

Al fine di ridurre i tempi del processo di pulizia, per ogni rilievo la nuvola di punti sparsa generata dai diversi voli è stata fusa in un'unica nuvola di punti. Questo passaggio è stato eseguito in base alla posizione dei marker.

Il confronto dei risultati ottenuti dai diversi approcci ha considerato l'errore di riproiezione, RMS e valori massimi. Poiché valori bassi rappresentano una migliore qualità del modello, l'approccio che ha portato a una maggiore riduzione di questi parametri ha permesso di individuare il metodo di pulizia ottimale. Per i dati da BF (D1, D6) è stato considerato valido il CLEAN 1A; per i dati provenienti da FGG (D2, D3, D4, D5, D7) i migliori risultati sono stati forniti dal metodo CLEAN 2.

4.3 Ottimizzazione della georeferenziazione

La quantità e la distribuzione spaziale dei GCP influiscono sulla qualità della registrazione finale: condizione necessaria è la presenza di almeno tre punti non collineari. Una buona distribuzione sull'intera area di studio consente di evitare una rotazione della nuvola di punti attorno ai GCP e un'errata stima delle dimensioni del modello. Una grande quantità di GCP garantisce una registrazione più rigida del modello ma richiede anche un maggior numero di risorse, in termini di costi e tempi. Entrambe queste condizioni sono poi influenzate dall'accessibilità del sito. La presenza di ostacoli come la vegetazione può influenzare la visibilità dei bersagli.

Tenendo conto di tutte queste considerazioni, anche nel migliore dei casi la qualità della georeferenziazione e quindi la validità della ricostruzione 3D del terreno dipendono dall'accuratezza della misura della posizione del target. Questa viene eseguita mediante rilievo topografico, la cui esecuzione non è esente da errori grossolani, i quali possono essere evitati eseguendo misurazioni ridondanti, errori sistematici ed errori casuali, i quali possono causare piccole inevitabili fluttuazioni nella registrazione dei dati. Questi fattori concorrono alla presenza di alcuni valori anomali o misurazioni così imprecise da ridurre in modo significativo la qualità della registrazione. È dunque importante definire l'accuratezza delle misure importate.

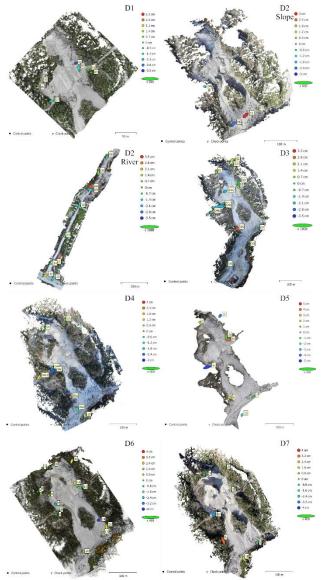


Figura 4. Nuvole di punti dense georeferenziate; la scala dei colori nella legenda mostra l'errore nella direzione verticale; viene mostrato l'errore per ogni GCP e la loro distribuzione.

Sono stati utilizzati i seguenti valori:

Per i dati da BF viene fornito il livello di accuratezza per ogni GCP: va da 18 mm a 38 mm, con un valore medio di 24 mm, per il primo rilievo (D1) se un GCP con una precisione di 50 mm non è considerato; va da 11 mm a 32 mm, con un valore medio di 20 mm, per il secondo rilievo (D6).

Per i dati da FGG:

 Caso D1: rilievo RTK GNSS, precisioni utilizzate 18-38 mm, con un valore medio di 24 mm,

- Caso D2: rilievo RTK GNSS, precisioni utilizzate 40 mm in planimetria e 80 mm in altimetria;
- Caso D6: rilievo RTK GNSS, precisioni utilizzate 11-32 mm;
- Negli altri casi: GNSS e stazione totale, precisioni utilizzate 20mm in planimetria e 40 mm in altimetria.

Ouesti valori stimati di accuratezza sono stati testati per verificare se fossero sufficientemente bassi da garantire una breve differenza nell'errore di riproiezione dello stesso marker utilizzato come GCP e poi come CP: una grande differenza avrebbe evidenziato una distribuzione non omogenea dell'errore nella registrazione del modello, dovuto a un livello di accuratezza sovrastimato che avrebbe costretto l'adattamento del modello in qualche porzione della nuvola di punti. Per osservare tale comportamento è stato adottato il seguente metodo. Sono stati considerati tre diversi valori di accuratezza: 0,005 m, 0,01 me 0,02 / 0,04 m (0,04 / 0,08 m per D2). Per ogni marker, per una data accuratezza, l'errore di riproiezione come GCP è stato confrontato con il valore come CP, sia prima che dopo l'ottimizzazione delle telecamere per verificare eventuali cambiamenti significativi. L'ottimizzazione della fotocamera ha portato a valori molto diversi e non è stato riconosciuto alcun andamento utile durante la modifica della precisione. Il confronto ha mostrato come un alto livello di accuratezza porti a una maggiore differenza tra la posizione stimata dei pochi marker e le loro coordinate effettive; una minore accuratezza, quindi un più ampio livello di confidenza, ha invece ridotto tali differenze e garantito una distribuzione più piatta indicando una distribuzione omogenea su tutti i marker di incertezza della ricostruzione del terreno.

Alla fine, i valori di precisione proposti hanno soddisfatto le aspettative poiché tutte le differenze erano inferiori a 1 mm.

I risultati finali, adottando tutti i punti validi come GCP, in termini di errore orizzontale, verticale e totale sono riportati in *Figura 4*: la precisione raggiunta della riproiezione è compresa tra 20 mm e 40 mm.

Per la generazione della nuvola densa, posizioni delle telecamere sono state stimate considerando tutti i target validi come GCP, per diversi motivi: basso numero di target disponibili rispetto alla scala del sito di interesse; cattiva distribuzione dei target dovuta alla ridotta accessibilità del pendio; complessità della geomorfologia (nicchie, blocchi isolati, pareti rocciose orientate in direzioni diverse) che potrebbe facilmente portare ad una cattiva ricostruzione e ad una distorsione del modello.

4.4 Classificazione della nuvola densa e generazione modello del terreno

Un *Digital Surface Model* (DSM) è la rappresentazione della superficie della terra considerando la presenza di tutti gli oggetti naturali e artificiali, come vegetazione, edifici, strade, ecc. Il *Digital Terrain Model* (DTM), invece, è la rappresentazione della superficie del terreno senza alcun oggetto artificiale e senza alcuna vegetazione (Meza et al., 2019); questo significa che DTM viene dopo l'elaborazione di un DSM da cui vengono individuati i punti non a terra e assegnati ad una classe che raggruppa il punto di una particolare categoria di oggetti (automobili, edifici, vegetazione alta, strade, ecc.).

La classificazione della nuvola di punti allo scopo di ottenere un DTM può essere spesso un'operazione critica, soprattutto in paesaggi naturali e complessi dove si possono trovare una vegetazione fitta e alta e una geomorfologia diversificata. La selezione manuale dei punti per ogni classe può essere il metodo più affidabile ma sicuramente il più dispendioso in termini di tempo. Negli ultimi 20 anni sono stati studiati molti algoritmi per automatizzare questo processo e la letteratura è ricca di studi che ne confrontano i risultati e ne evidenziano i limiti (Passalacqua et

al., 2015). Quattro sono le principali categorie di approccio per effettuare tale classificazione e si differenziano per la struttura assunta dai punti del suolo: filtri di densificazione progressiva (ad esempio la rilevazione del punto più basso); filtri basati sulla superficie che rimuovono progressivamente i punti che non si adattano alla superficie stimata del modello; filtri morfologici; filtri basati sulla segmentazione e sul clustering che funzionano in porzioni omogenee del modello piuttosto che su ogni singolo punto. Studi condotti da Sithole et al., 2004 sull'applicazione di diversi algoritmi di filtraggio su paesaggi rurali, aree urbane e terreni accidentati con vegetazione hanno rivelato che i filtri che stimano le superfici locali offrono le migliori prestazioni. Per questo motivo, è valsa la pena provare diverse soluzioni applicando gli algoritmi forniti dai software in uso.

In Agisoft Metashape è stato utilizzato l'algoritmo Classify Ground Points. Il software è stato in grado di eseguire una classificazione automatica dei punti in base alla definizione di parametri impostati dall'utente (per informazioni, vedasi Agisoft Metashape – User Manual). Diversi tentativi sono stati effettuati modificando la dimensione della cella, la distanza massima e l'angolo massimo ma nessuno di questi ha portato a buoni risultati: in ogni caso molte porzioni del versante non sono state classificate come terreno e alcune porzioni della vegetazioni sono state mal classificate, richiedendo infine un lungo lavoro manuale di riclassificazione. Altri tentativi sono stati effettuati utilizzando il filtro Cloth Simulation (CS), grazie al plug-in integrato nell'ultima versione di CloudCompare. I dettagli dell'algoritmo e la definizione dei parametri che l'utente può manipolare sono meglio descritti da Zhang et al., 2016. I parametri che regolano la simulazione sono stati modificati per trovare il miglior risultato. Il problema principale è stato quello di fare in modo che il telo (cloth) si adattasse alle asperità e alle nicchie dell'ammasso roccioso: ogni prova ha tralasciato qualche porzione del terreno e nessuna configurazione dei parametri ha portato ad una buona rappresentazione dell'intero versante.

Infine, le numerose difficoltà nel trovare la migliore classificazione automatica hanno reso inevitabile l'intervento manuale dell'operatore. Per facilitare questo compito, è stata eseguita comunque una prima classificazione preliminare utilizzando un metodo semplificato. In Agisoft Metashape è stata eseguita una classificazione multi-classe e, grazie alle tecniche di machine learning, è stata possibile una classificazione automatica della nuvola di punti in diverse classi (terreno, vegetazione alta, edificio, auto e attività antropica). I risultati ottenuti non sono precisi, ma sufficienti a rendere più facile e veloce la classificazione manuale. Questo processo ha portato alla classificazione delle foreste ai lati dell'area di interesse e della porzione al centro della zona inferiore come vegetazione alta: il futuro confronto dei modelli avverrà tra i DTM, per cui non dovrà mostrare alcuna possibile evoluzione in queste aree.

5. CONFRONTO MULTITEMPORALE TRA LE NUVOLE DI PUNTI

CloudCompare è un software open source originariamente progettato per elaborare e confrontare sia nuvole di punti 3D che mesh triangolari. Di seguito vengono descritti i passaggi che hanno portato a un'accurata comparazione delle nuvole di punti.

5.1 Rimozione del rumore

A differenza della selezione graduale in Agisoft Metashape già discussa, CloudCompare permette di rimuovere automaticamente alcuni punti considerando la geometria della nuvola e la relativa posizione e distanza di ogni suo punto.

Dopo aver rimosso i punti doppi, le nuvole di punti sono state sotto-campionate impostando una distanza minima punto-punto di 05 cm. Poiché erano ancora presenti alcuni gruppi isolati di punti, è stato utilizzato il filtro il SOR (*Statistical Outlier Removal*): per ciascun punto tale algoritmo rimuove i punti all'interno di un volume, il cui raggio è pari alla distanza media più la deviazione standard moltiplicata per un fattore (nSigma) scelto dall'utente. I parametri statistici si basando su un numero di punti vicini (*nearest neighbour, kNN*) definito dall'utente. Un numero costante di kNN di 100 e un nSigma di 1 sono stati in grado di rimuovere la maggior parte dei punti rumorosi dal perimetro e dai fori delle nuvole di punti. L'unica eccezione è stata la nuvola di punti dai dati D1: tale processo avrebbe influenzato in modo significativo la densità del modello complessivo, quindi non è stato eseguito.

5.2 Stima della distanza tra le nuvole di punti

Le misurazioni delle variazioni di superficie vengono solitamente acquistate con due diversi approcci (Lague et al., 2013): calcolo di un campo di spostamento mediante tracciamento di parti omologhe della superficie, solitamente applicato nel monitoraggio dei movimenti franosi in terra; calcolo della distanza tra due modelli, solitamente applicato quando non ci sono parti omologhe nella scena.

Le instabilità di un versante in roccia, in particolare la caduta di blocchi e la colata detritica non sono fenomeni solitamente caratterizzati dalla lenta mobilitazione di un'unica massa deformabile. Per questo motivo e tenendo conto della totale assenza di parti omologhe mobili riconoscibili, è stato adottato l'approccio del calcolo della distanza.

Per eseguire tale procedura, il software utilizza diversi algoritmi: Cloud-to-Cloud (C2C), Cloud-to-Mesh (C2M) e Multiscale Model to Model Cloud (M3C2). La decisione del metodo più affidabile si è basata su precedenti studi comparativi applicati nei campi delle geoscienze. Gli stessi Lague et al., 2013 hanno mostrato che l'algoritmo M3C2 risulta più robusto ai cambiamenti nella densità dei punti e nel rumore della nuvola, a differenza del C2C, e anche se potrebbe essere accurato come il C2M, è l'unico a consentire il calcolo dell'intervallo di confidenza locale nella stima della distanza; Nourbakhshbeidokhti et al., 2019 hanno testato questi metodi applicandoli nella valutazione dei cambiamenti topografici che avvengono a causa della sedimentazione nei canali d'acqua e il M3C2 si è rivelato il più affidabile per evidenziare i tassi di erosione e deposizione dai confronti delle nuvole di punti.

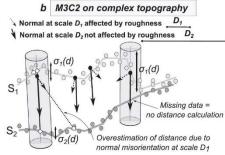


Figura 5. Schema di una topografia complessa e conseguenze di diverse scale normali nel calcolo della distanza. (Figura da Lague et al., 2013)

Si è considerato inoltre che questo metodo non esegue alcuna l'interpolazione, che potrebbe causare errori nello studio di superfici complesse. In più, Lague et al., 2013 hanno dimostrato la capacità dell'algoritmo M3C2 di gestire geometrie 3D

complesse, piani sia orizzontali che verticali all'interno della stessa scena, e di ridurre l'incertezza causata dalla rugosità locale del modello. Tale algoritmo consente, inoltre, due vantaggi: definire localmente un livello di incertezza che va con la stima della distanza, chiamato anche *level of detection* o LOD95%; operare la stima della distanza su un sottoinsieme della nuvola di punti, costituito dai *core points*, in questo caso individuati definendo una distanza minima di 0,5 m. Per i dettagli dell'algoritmo M3C2 e la corretta definizione dei parametri che l'utente deve impostare, gli autori rimandano all'articolo completo di Lague et al., 2013. Tuttavia, le considerazioni fatte per decidere i valori ottimali della scala della normale (*normal scale*) e della scala della proiezione (*projection scale*), vengono proposte nei capitoli seguenti.

5.3.2 Determinazione dell'orientamento della normale e della scala ottimale della normale

In superfici con una complessa rugosità, il valore della scala della normale D influenza fortemente l'orientamento della direzione normale alla superficie e di conseguenza la possibilità di rilevare una distanza tra le due nuvole di punti che sia sovrastimata. La Figura 5 mostra come D1, paragonabile alla scala della rugosità locale, rileverebbe direzioni normali molto diverse, portando a una stima della distanza errata; un valore più grande (D2) sarebbe in grado di stimare un orientamento della normale più uniforme, ignorando l'effetto della rugosità superficiale. Si noti che la deviazione standard $\sigma 1(d)$, misurata lungo una direzione normale definita da una grande scala, varia con piccole variazioni dell'orientamento della superficie, portando a un intervallo di confidenza locale più ampio, il che indica una stima della distanza meno accurata.

In queste circostanze, dovrebbe essere stimato un valore ottimale di D. Una soluzione semplice ed empirica sarebbe quella di definire un intervallo di valori, ad esempio da 0,5 ma 5 m con un passo di 0,5 m, e il valore locale di D sarebbe quello che garantisce un minimo di 10 punti utilizzati nella stima della normale. Questo metodo si adatterebbe meglio alla varietà di geometrie nelle scena, evitando la definizione di una scala normale costante che potrebbe sovrastimare la distanza tra le due nuvole di punti o non rilevare un cambiamento significativo nell'orientamento della superficie.

L'unico problema è rappresentato da una restrizione all'interno M3C2: l'orientamento normale plug-in necessariamente, in assenza della posizione del sensore per la nuvola di punti di riferimento, la definizione di un orientamento preferito tra un ristretto elenco di opzioni: $\pm X$, $\pm Y$, $\pm Z$, \pm Baricentro, ± (0,0,0). Poiché nessuna di queste opzioni ha fornito validi risultati, le normali sono state calcolate utilizzando gli strumenti all'interno di CloudCompare. La caratteristica più utile è la possibilità di regolare l'orientamento delle normali secondo un metodo Minimum Spanning Tree. Tuttavia, questo approccio ha un suo limite: permette di impostare un solo valore di D. La soluzione migliore è stata individuata testando diversi valori, da 0,5 m a 15 m, per valutare la corretta ricostruzione della rugosità superficiale. Valori maggiori della scala normale avrebbero portato a una superficie più liscia, valori inferiori avrebbero rilevato piccoli dettagli delle asperità della superficie. Alla fine, il valore ottimale in termini di tempo di lavorazione e di corretta restituzione della rugosità superficiale è stato di 1 m.

5.3.2Determinazione della scala ottimale di proiezione

Il valore di della scala di proiezione *d* influenza fortemente sia la risoluzione spaziale del calcolo della distanza che l'intervallo di confidenza: per valori maggiori della scala di proiezione la risoluzione spaziale delle misurazioni diminuisce mentre aumenta la capacità di rilevare cambiamenti statisticamente significativi. Ne consegue che deve essere trovato un valore

ottimale della scala di proiezione per rilevare correttamente i cambiamenti tra le nuvole di punti senza perdere alcuna importante informazione. Lague et al., 2013 hanno affrontato questa questione osservando il LOD95% in base alla diversa rugosità della superficie (scogliera piatta, ciottoli, detriti) e alla diversa densità di punti (*Figura 6*).

La stima dell'intervallo di confidenza è stata ottenuta confrontando nuvole di punti identiche. Ciò mostra come per valori bassi di d, 0,1-0,2 m, l'intervallo di confidenza stimato in superfici piane è troppo piccolo e porta al rilevamento di variazioni che non dovrebbero essere statisticamente significative. Questo accade per nuvole di punti confrontate con densità sia simili che differenti. In caso di superfici ruvide, come ciottoli e detriti, aumentando d oltre il valore di 1 m, aumenta molto la percentuale di punti associati a variazioni significative della superficie. Per nuvole di punti con densità diversa, ciò avviene con valori maggiori di 0,5 m. Le nuvole di punti oggetto di questo studio presentano le seguenti caratteristiche: la loro densità è molto simile poiché sono state tutte sotto-campionate a 5 cm; presentano tutte superfici sia piane che ruvide. In conclusione, la scala di proiezione ottimale deve essere trovata in un range che va da 0,3 m e 2 m; sono stati testati tre valori, 0,5, 1 e 2 m.

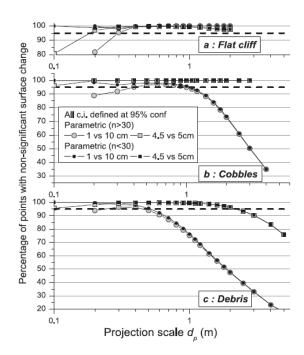


Figura 6. Relazione tra l'incertezza della distanza (chiamata anche livello di rilevamento, LOD 95%) ed in diversi tipi di terreno. (Figura da Lague et al., 2013)

Dai risultati ottenuti, un valore grande di d avrebbe individuato aree con una variazione significativa più continue e localizzate sulla superficie del versante; diversamente un valore piccolo avrebbe individuato come significative tante piccole aree sparse lungo tutto il versante. In fine, per poter tener conto anche dei possibili distacchi locali di blocchi di piccole dimensioni, si è optato per un valore intermedio di $1\,\mathrm{m}$.

5.3.3 Risultati della distanza stimata mediante algoritmo M3C2

I risultati delle diverse comparazioni sono visualizzati nell'Appendice A; un esempio è riportato nella Figura 7. Il primo modello D1 è stato confrontato con i dati LiDAR provenienti dall'agenzia slovena per l'ambiente, *Agencija Republike Slovenije*

Za Okolje (ARSO). I valori positivi di distanza sono indicati con colori caldi (dal giallo al rosso), i valori negativi sono indicati con colori freddi (dal verde al blu). L'incertezza della distanza mostrata è il livello di fiducia nel rilevare la distanza tra le due nuvole di punti.

I risultati consentono di evidenziare le nicchie in cui si è verificato il distacco, principalmente lungo la parete verticale dell'ammasso roccioso nella parte superiore sinistra del versante, con particolare insorgenza nella parte superiore. La perdita di materiale avviene anche sul deposito detritico: ciò non è insolito poiché all'interno del deposito detritico possono verificarsi instabilità, innescate dall'impatto di un blocco o da precipitazioni atmosferiche, provocando un flusso di detriti verso valle. È inoltre possibile riconoscere le zone dove il materiale si è accumulato provocando un aumento di volume nei depositi detritici, sia nella parte mediana del versante che lungo la parte inferiore, interessando principalmente la porzione destra. Molti cambiamenti si osservano anche lungo l'alveo e sulle rive del fiume, dove la presenza attività minerarie provoca la rimozione e lo stoccaggio di materiale naturale. La presenza di distanze relativamente ridotte, inferiori a 1 m, tra due nuvole di punti provenienti da rilievi consecutivi rileva un'evoluzione su scala minore ben distribuita su tutto il versante.

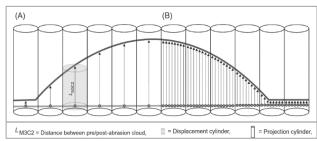


Figura 8. Schema del principio alla base della metodologia adottata per stimare le variazioni di volume a partire dalle distanze M3C2. (Figura da Griffith e Thompson, 2017)

Tali stime vengono fornite con un intervallo di confidenza, che nella maggior parte dei casi è globalmente inferiore a 10 cm. Nelle porzioni del pendio in cui l'orientamento della superficie è più coerente, si verifica un intervallo di confidenza vicino all'errore di registrazione. Valori maggiori di LOD95% sono principalmente causati da una cattiva ricostruzione della nuvola di punti di riferimento e / o comparata o possono essere conseguenza di un aumento locale della rugosità della superficie.

5.6 Stima della variazione di volume

In letteratura vengono adottati approcci diversi per rilevare i cambiamenti di volume topografici confrontando due nuvole di punti che rappresentano geomorfologie naturali: Wheaton et al., 2010 e William RD, 2012 hanno applicato il metodo Difference of DEMs (DoD) eseguendo il confronto di due griglie orizzontali per rilevare una variazione superficiale verticale, comunemente adottata per lo studio dell'erosione e della sedimentazione in ambienti fluviali; Guinau et al., 2019 hanno eseguito un confronto tra nuvole di punti e mesh per osservare i cambiamenti di volume in una frana naturale e una caduta di massi innescata artificialmente; Stumpf et al., 2014 hanno combinato il calcolo della distanza stimata con il M3C2 con il confronto di due raster, ottenuti andando a interpolare i dati circoscritti in cluster di punti. In questo caso il DOD avrebbe comportato una grande perdita di informazioni, essendo presenti molte superfici verticali (Lague et al., 2013). Pertanto, le descrizioni delle ultime due metodologie fornite dagli autori non sono state sufficienti per replicare i due approcci. Per questi motivi è stato adottato un metodo semplificato proposto da Griffith e Thompson, 2017: essi hanno studiato l'applicazione della scansione laser nella quantificazione del livello di abrasione nelle ossa umane sommerse dall'acqua e hanno proposto un semplice approccio analitico basato sull'algoritmo M3C2. Il principio è ottenere un volume parziale Vi moltiplicando per ogni punto i la distanza L_{M3C2} per un'area circolare locale Ai; il volume totale è quindi dato sommando i diversi Vi. Tale cilindro potrebbe essere considerato uguale a quello adottato dall'algoritmo M3C2 nel calcolo della distanza tra le nuvole, ma ciò potrebbe portare a qualche errore: in una superficie complessa l'orientamento normale potrebbe variare molto, provocando la sovrapposizione o la non tassellatura dei volumi cilindrici, quindi una sovrastima o una sottostima della variazione di volume.

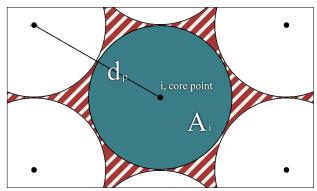


Figura 9. Schema adottato per calcolare la variazione di volume secondo il metodo semplificato proposto da Griffith e Thompson, 2017, l'area rossa e bianca è quella non considerata nel computo, portando a una sottostima della variazione di volume.

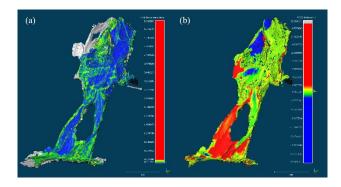


Figura 7. Esempio indicativo dei risultati del confronto cloudto-cloud, in questo caso D5 vs D6, in termini di incertezza della distanza (a) e distanza (b); questi valori vengono visualizzati sulla nuvola di punti confrontata (D6, in questo caso).

Tuttavia, poiché la rugosità della superficie e la direzione normale lungo la quale vengono considerate nella stima delle distanze durante l'esecuzione dell'algoritmo M3C2, si può comunque ipotizzare l'applicazione di questo metodo anche a geomorfologie complesse nel momento in cui si immagina una distribuzione planare e regolare dei $core\ points\ (Figura\ 9)$ dove d_p , la distanza punto-punto, è impostata uguale alla distanza minima di sotto-campionamento di 0,05 m. Ciò dovrebbe evitare, con qualche incertezza, di alterare l'effettiva area della scena. Ad ogni punto è stato assegnato un volume, dato moltiplicando l'area Ai per il L_{M3C2} associato.

I risultati cumulativi (*Tabella 1*), sia per i valori positivi che per quelli negativi, che rappresentano rispettivamente un accumulo e una perdita di volume, sono stati quindi calcolati eseguendo uno script in Matlab poiché era possibile esportare un file ASCII della nuvola di punti da CloudCompare.

Valori positivi indicano un accumulo di materiale, valori negativi indicano una perdita di volume dovuta principalmente al distacco che descrive l'evoluzione dell'ammasso roccioso. Nella maggior parte dei casi, i risultati sono molto diversi. Lo scenario più frequente è un volume negativo maggiore di quello positivo: ciò può essere giustificato considerando la possibilità che la maggior parte del materiale distaccato si sia depositato fuori dalla scena osservata durante il sopralluogo, accumulandosi tra le aree vegetate nella porzione inferiore sinistra del versante o addirittura raggiungendo punti più lontani del letto del fiume. Non si possono infine ignorare la presenza di un'attività mineraria a valle e fenomeni di dissesto secondari innescati da eventi naturali: il bilancio finale può essere duqnue influenzato sia dalle attività umane che da cause naturali.

	VOLUME (m ³)					
	Positive	Negative				
D1	20.393	13.218				
D2 slope	522	19.746				
D2 river	27.570	7.162				
D3	6.401	10.425				
D4	12.338	13.953				
D5	2.977	5.138				
D6	30.524	19.554				
D7	2.702	5.310				

Tabella 1. Risultati cumulativi per la stima della variazione di volume da ogni confronto.

Altri scenari, dove il volume positivo è maggiore di quello negativo possono essere giustificati più verosimilmente allo stesso modo: il distacco è avvenuto in una porzione fuori scena o dove il modello non è stato ricostruito per presenza di vegetazione o la graduale e distribuita l'erosione dell'ammasso roccioso, possibilmente non indiviudata come variazinione significativa nel confronto delle nuvole, ha comportato l'accumulo di materiale nel deposito detritico di valle. Combinando i risultati del modello del pendio e di fiume nel caso del secondo set di dati D2, viene mostrata una differenza relativamente piccola tra il materiale accumulato e quello staccato: ciò indica che una parte del materiale ha raggiunto l'alveo e parte di questo è stato trasportato dal torrente Belca verso il fiume Sava.

6. CONCLUSIONI

I risultati finali mostrano un'evoluzione qualitativa e quantitativa del versante: vengono rilevate le principali aree in cui si verifica il distacco e l'accumulo di blocchi rocciosi e viene segnalata un'evoluzione del materiale in alveo, soprattutto nella parte alta. Questa esperienza evidenzia il fatto che anche se l'elaborazione fotogrammetrica potrebbe avere un alto livello automatizzazione, per la ricostruzione di una geomorfologia complessa è richiesto il giudizio dell'utente. I software SfM sono molto utili in quanto forniscono una tecnica user friendly e a basso costo per ricostruire un'area d'indagine in un ambiente virtuale 3D, partendo semplicemente da più immagini sovrapposte riprese da diversi punti di vista. Vaste aree possono essere indagate da UAV, oggi accessibili a tutti in termini di economici, di portabilità e livello di automatizzazione durante il volo. L'elaborazione dei dati diventa più impegnativa quando è richiesta una georeferenziazione indiretta tramite GCP e si vuole minimizzare l'errore di riproiezione finale: l'esperienza e la

conoscenza dell'utente sono gli elementi chiave per ottenere il miglior risultato possibile, perché nella maggior parte dei casi un'ispezione visiva delle immagini è necessaria per valutare la proiezione dei marker e il loro corretto posizionamento nelle immagini potrebbe richiedere un processo iterativo, tornando più volte sulle stesse immagini (Bitelli et al., 2004). Anche la classificazione dei punti del terreno può richiedere un intervento manuale: considerando i limitati risultati restituiti da molti algoritmi differenti. Esistono pertanto algoritmi come CANUPO, i quali possono essere addestrati assegnando manualmente alcune porzioni della nuvola di punti a ad una classe definita, ma anche in questo caso l'esperienza dell'utente è l'elemento chiave per addestrare al meglio il classificatore e raggiungere un buon risultato.

Nella stima dei rischi naturali, il processo fotogrammetrico può essere una potente risorsa per eseguire indagini sulla geometria del sito e analisi di stabilità. Sull'ammasso roccioso possono essere effettuati rilievi geomeccanici indiretti al fine di valutare la distribuzione spaziale delle famiglie di giunti e stimare potenzialmente le dimensioni del blocco più propenso a collassare: si possono creare mappe delle faglie e delle fratture ad alta risoluzione per osservare la crescita, la meccanica e le proprietà delle fratture (Bemis et al., 2014). Un'indagine più approfondita del deposito detritico potrebbe consentire, inoltre, la stima della granulometria del sedimento per valutare la stabilità interna.

Il confronto con altri tipi di dati potrebbe anche aiutare nella ricostruzione dell'intero fenomeno naturale. Qui vengono mostrate le aree più suscettibili al distacco e all'accumulo, osservate in un breve periodo di tempo, quasi 1 anno se si escludono i dati LiDAR provenienti dal 2014, ma si può fare di più: una correlazione con fattori esterni come precipitazioni o attività minerarie potrebbero eventualmente evidenziare possibili fattori scatenanti dell'instabilità del versante.

In conclusione, molte cose possono essere realizzate combinando la fotogrammetria UAV e i software SfM. Essi forniscono un'alternativa a basso costo, rapida e flessibile ad altre metodologie per una mappatura geomorfologica accurata; possono essere utilizzati anche prima e dopo un evento naturale estremo o anche in tempo reale per offrire una base su cui testare modelli, prevedere e comprendere l'evoluzione del processo indagato (Tarolli P., 2014).

7. RICONOSCIMENTI

Questo lavoro è stato possibile grazie alla speciale collaborazione con il doc. dr. Dejan Grigillo e l'aiuto di asist. dr. Klemen Kozus Trajkovski e doc. dr. Dušan Petrovič, membri del Dipartimento di Ingegneria Geodetica dell'Università di Lubiana. Un ringraziamento speciale al preside della Facoltà di Ingegneria Civile e Geodetica., prof. dr. Mikoš Matjaž, che ha reso possibile la realizzazione, presso una sede estera, della tesi di laurea magistrale di cui questo lavoro mostra gli elementi salienti.

8. RIFERIMENTI BIBLIOGRAFICI

Aicardi, I., Chiabrando, F., Grasso, N., Lingua, A. M., Noardo, F., and Spanò, A.: UAV photogrammetry with oblique images: first analysis on data acquisition and processing, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 835–842, https://doi.org/10.5194/isprs-archives-XLI-B1-835-2016, 2016.

Agisoft Forum, Topic: Investigating Alignment Parameters https://www.agisoft.com/forum/index.php?topic=8074.msg3894 9#msg38949 (15 Mar. 2020)

Agisoft Metashape User Manual Professional Edition, Version 1.5

Bemis S.P., Micklethwaite S., Turner D., James M.R., Akeiz S., Thiele S.T., Bangash H.A., Ground-based and UAV-based photogrammetry: a multi scale, high resolution mapping tool for structural geology and paleosesmology. *J. Struct. Geol.* 69 (A), pp. 163-178.

Benassi F., Dall'Asta E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R., Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. *Remote Sensing* 2017, 9, 172, doi: 10.3390/rs9020172.

Balletti C., Guerra F., Vernier P., Fotogrammetria da UAV per integrare il rilievo e la documentazione di monumenti colpiti da sisma, in *Geomedia* n.1, 2014

Barbarella, M., Fiani, M., & Lugli, A. (2015). Rilievi multitemporali con laser scanner terrestre per il monitoraggio di una frana. Bollettino SIFET, (1), 8-18.

Bitelli G., Dubbini M., Zanutta A., Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004*, 35, pp. 246–251.

Bronzino, G. P. C., Grasso, N., Matrone, F., Osello, A., and Piras, M.: LASER-VISUAL-INERTIAL ODOMETRY BASED SOLUTION FOR 3D HERITAGE MODELING: THE SANCTUARY OF THE BLESSED VIRGIN OF TROMPONE, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W15, 215–222, https://doi.org/10.5194/isprs-archives-XLII-2-W15-215-2019, 2019.

Calantropio, A., Chiabrando, F., & Spanò, A. (2018). Impiego di tecniche di fotogrammetria digitale speditiva a supporto delle opere provvisionali negli interventi tecnici in emergenza sismica. Bollettino SIFET, (3), 22-31.

CloudCompare version 2.6.1 – User manual

Chiabrando, F., Lingua, A., and Piras, M.: Direct photogrammetry using UAV: tests and first results, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W2, 81-86, doi:10.5194/isprsarchives-XL-1-W2-81-2013, 2013.

Delacourt C, Allemand P, Berthie E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bulletin de Societe Geologique 178(2):89–100

Eisenbeiss H, Sauerbier M (2011) Investigation of UAV systems and flight modes for photogrammetric applications. Photogramm Rec 26(136):400-421

Geodatabase of Slovenian Environment Agency http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@ Arso ()

Giordan D, Hayakawa Y, Nex F, Remondino F, Tarolli P (2017) Review article: the use of remotely piloted aircraft systems (RPAS) for natural hazards monitoring and management. Nat Hazards Earth Syst Sci Discuss:1–26. https://doi.org/10.5194/nhess-2017-339, in review

Griffith S.J., Thompson C.E.L., The Use of Laser Scanning for Visualization and Quantification of Abrasion on Water-

Submerged Bone. University of Southampton, United Kingdom In: Errickson D., Thompson T., *Human Remains: Another Dimension – The Application of Imaging to the Study of Human Remains*, Academic Press: An imprint of Elsevier, 2017, pp. 102-123

Grimm A.,2007 the Origin of the Term Photogrammetry,???, pp. 52-60.

Guinau M., Tapia M., Pérez-Guillén C., Suriñach E., Roig P., Khazaradze G., Torné M., Jesús Royán M., Echeverria A., 2019 Remote sensing and seismic data integration for the characterization of a rock slide and an artificially triggered rock fall. *Eng. Geol.*, 257, pp. 1-15.

Johnson K., Nissen E., Saripalli S., Arrowsmith J.R., McGarey P., Scharer, K., Williams P., Blisniuk K., 2014 Rapid mapping of ultrafine fault zone topography with structure from motion. *Geosphere*, 10 (5), pp. 969–986.

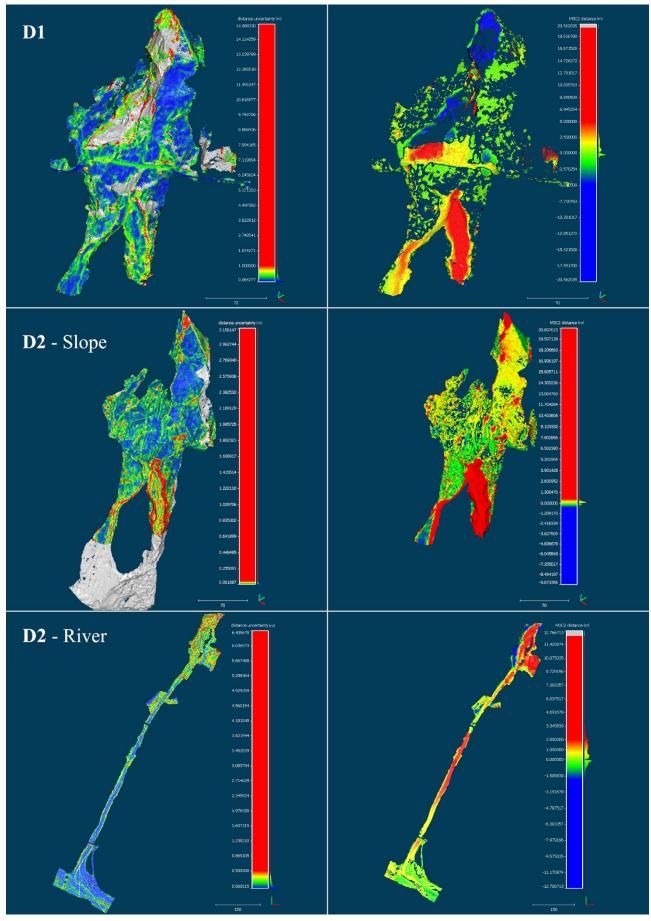
Lague D., Brodu N., Leroux J., 2013 Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). *ISPRS Journal of Photogrammetry and Remote Sensing*, 82, pp. 10-26.

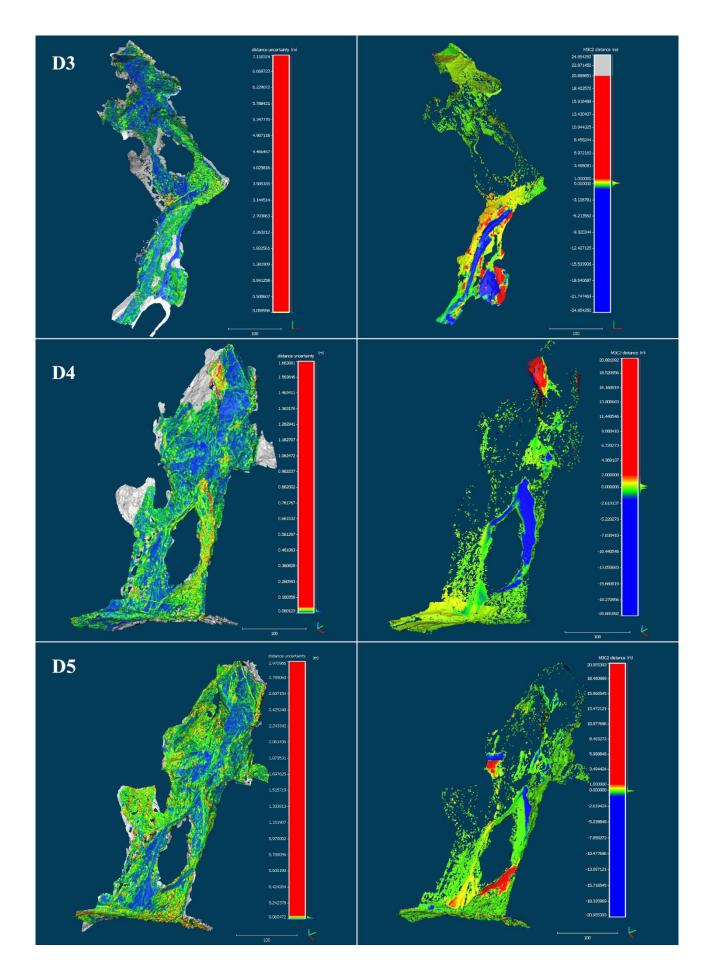
Lazar A., Begus T., Vulic M., 2018 Monitoring of the Belca rockfall. *Acta Geotechnica Slovenica*, pp. 2-15.

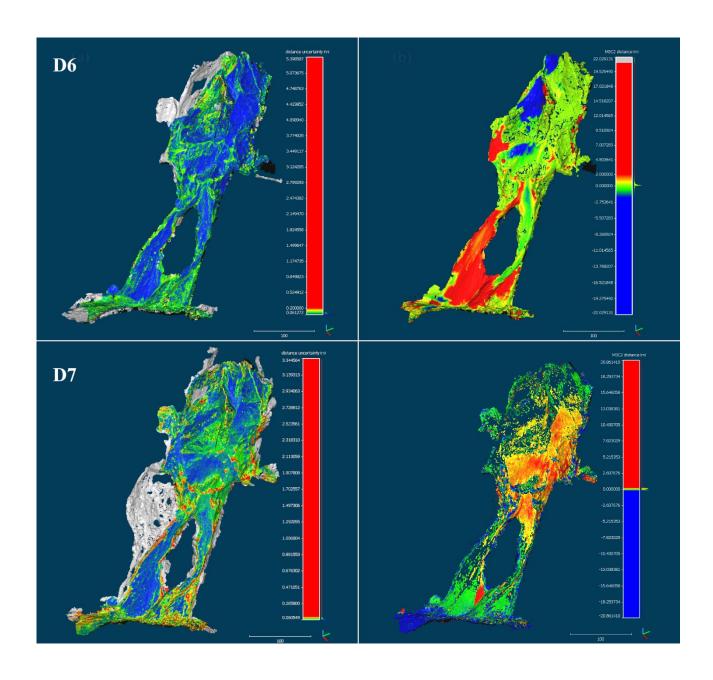
Mallison H., *Photogrammetry tutorial 11: How to handle a project in Agisoft Photoscan*, October 11th, 2015 (https://dinosaurpalaeo.wordpress.com/2015/10/11/photogramm etry-tutorial-11-how-to-handle-a-project-in-agisoft-photoscan/)

Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. https://doi.org/10.3390/rs9121235

Masiero, A., Chiabrando, F., Lingua, A. M., Marino, B. G., Fissore, F., Guarnieri, A., and Vettore, A.: 3D modeling of GIRIFALCO fortress, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W9, 473–478, https://doi.org/10.5194/isprs-archives-XLII-2-W9-473-2019, 2019.


Meza J., Marrugo A., Ospina G., Guerrero M. and Romero L., *A Structure-from-Motion Pipeline for Generating Digital Elevation Models for Surface-Runoff Analysis*, Journal of Physics: Conference Series, Volume 1247, 6th National Conference on Engineering Physics and the 1st International Conference on Applied Physics Engineering & Innovation 22–26 October 2018, Bucaramanga, Colombia


Nourbakhshbeidokhti S., Kinoshita A.M., Chin A., Florsheim J.L., A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance. Remote Sens. 2019, 11, 586.


Passalacqua P., Belmont P., Staley D., Simley J., Arrowsmith R., Bode C., Crosby C., DeLong S., Glenn N., Kelly S., Lague D., Sangireddy H., Schaffrath K., Tarboton D., Wasklewicz T., Wheaton J.(2015). Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Science Reviews. 148. 10.1016/j.earscirev.2015.05.012.

- Reese, B. (2006). Towards a Closer Combination of Direct and Indirect Sensor Orientation Of Frame Cameras.
- Rossi, P. (2018). Rilievo e monitoraggio di una cava di marmo con tecniche fotogrammetriche da drone. *Bollettino SIFET*, (1), 36-43.
- Shenk T., *Introduction to photogrammetry*, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 2005
- Sithole G., Vosselman G., 2004. Experimental compirson of filter algorithm for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. 59, 85-101
- Stumpf A., Malet J.P., Allemand P., Pierrot-Deseilligny M., Skupinski G. *Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion*, Geomorphology, 2014
- Tarolli P. (2014) *High-resolution topography for understanding Earth surface processes: opportunities and challenges*. Geomorphology 216:295–312
- Unmanned Aircaft Systems Data Post-Processing, USGS National UAS Project Office March 2016
- Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:1–12
- Toschi, I., & Remondino, F. (2016). Soluzioni geomatiche per il rapid mapping di catastrofi naturali. Bollettino SIFET, (4), 1-11.
- Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M., 2012. 'Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314
- Wheaton J.M., Brasington J., Darby S.E., Sear D.A., 2010. *Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets*. Earth Surf. Process. Landf. 35 (2), 136–156.
- Williams R.D. (2012). *DEMs of difference* In: L. E. Clarke, & J. M. Nield (Eds.), Geomorphological Techniques (Online Edition). London, UK: British Society for Geomorphology
- Zhang W., Qi J., Wan P., Wang H., Xie D., Wang X., Yan G., 2016. *An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation*, MDPI Remote Sensing Journal 2016, 8, 501
- Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) 'Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314
- Zhu L., Erving A., Koistinen K., Nuikka M., Junnilainen H., Heiska N., Haggrén, H., 2008. Georeferencing multi-temporal and multi-scale imagery in photogrammetry. In: Proceedings of ISPRS Conference Commission XXI, WG V/2, Beijing(China), pp. 226e230

APPENDICE A – M3C2 Results

A 700 ANNI DALLA MORTE DI DANTE: LA GEOMATICA DELLA COMMEDIA

IN THE 700TH ANNIVERSARY OF THE DANTE'S DEATH THE GEOMATICS OF THE COMEDY

Francesco Fiermonte (1), Marco Gnemmi (2), Luigi Mussio (3)

(1) Politecnico di Torino – DIST – Viale Mattioli, 39 – 10125 Torino
 Tel. 011-090-7478 – Fax 011-090-7499 – e-mail francesco.fiermonte@polito.it
 (2) Istituto Maria Immacolata – Via A. Diaz, 64 – 20064 Gorgonzola (MI)
 Tel. 02-95300205 – Fax 02-95138997 – e-mail marcognemmi.mg@gmail.com
 (3) Politecnico di Milano – DICA – Piazza Leonardo da Vinci, 32 – 20133 Milano
 Tel. 02-2399-6501 – Fax 02-2399-6602 – e-mail luigi.mussio@polimi.it

Parole chiave: Applicazioni Geomatiche, Analisi statistiche, Letteratura italiana.

Keywords: Geomatics Applications, Statistical analysis, Italian Literature.

Riassunto – Il presente lavoro prende in esame l'intera Commedia dantesca, in prossimità del 700° anniversario della scomparsa di questo Autore, proponendo innanzitutto una analisi statistica dei luoghi citati, nonché dei personaggi legati a questi luoghi. L'analisi si pretende esaustiva, ricordando anche i luoghi, ovviamente meno frequenti, fuori dall'Italia (a riguardo, si ricordi che Dante non poteva avere cognizioni geografiche molto maggiori di quelle già condensate nell'Ecumene di Tolomeo). Per questo fine, studenti di una Scuola superiore, a gruppi, hanno letto tutti i canti delle tre Cantiche con cui si compone la (Divina) Commedia, preparando una lista ordinata dei dati richiesti. La loro dedizione e la loro cura hanno fornito un supporto indispensabile, preziosissimo e fondamentale, per formare tutta la base di dati da cui sono partite le analisi statistiche, grafiche e geomatiche che costituiscono il centro di questo lavoro. Dopodiché si presenta l'analisi di varianza e l'analisi della connessione, constatando l'assenza di una legge sul comportamento medio delle variabili trattate e tuttavia una disposizione non interamente casuale. Infine si costruisce una rete che organizza il flusso di informazioni fra personaggi e luoghi, a partire dalle tabelle dei dati raccolti. Questa rete ha il modello funzionale simile a quello di una rete di livellazione, oppure ad una rete di differenze di potenziale o flussi, in altre discipline (pur nell'ovvia assenza di osservazioni e di un loro modello stocastico-metrologico). I dati raccolti sono condensati in una serie di mappe anamorfiche che ne facilitano la lettura.

Abstract – As we approach the 700th anniversary of the death of Dante Alighieri this work seeks to examine his Comedy in its entirety, providing, in the first instance, a statistical analysis of the places mentioned therein, and another dealing with the characters associated with these places. The analysis is intended to be exhaustive and includes those places, obviously less frequent, outside of Italy. To this end, groups of high school students were asked to read the cantos of the three Canticles of which Dante's Divine Comedy is composed, and to prepare a list of the required data in a properly ordered list. Their dedication and painstaking efforts have provided an indispensable, invaluable and essential support for the creation of the database from which the statistical, graphical and geomatic analyses that form the core of this paper are derived. Next, the variance analysis and the connection analysis are presented, observing the absence of a law on the average behavior of the variables treated and yet a not entirely random permutation. Lastly, a network is created to organize the information flow between characters and places on the basis of the tables into which the data collected was placed. This network has a functional model similar to that of a leveling network, or a network of potential differences or flows, in other disciplines (despite the obvious absence of observations and a stochastic-metrological model for them). The data collected are condensed into a series of anamorphic maps that facilitate their reading.

1. Introduzione

La lettura integrale della Commedia dantesca permette d'identificare un certo numero di personaggi e luoghi, come sono riportati nei versi che, a terzine di endecasillabi, compongono i canti dell'Inferno, del Purgatorio e del Paradiso (Alighieri, 1993). Le elaborazioni effettuate e presentate nel seguito procedono a tre analisi rispettivamente di natura geografica, statistica e topologico/geodetica (dove questa apposizione ricorda che i geodeti, con gli astronomi, sono stati tanta parte della fondazione della matematica, almeno da Galileo, passando per Eulero e Gauss, fino ad Hilbert):

 alla mappatura dei luoghi e dei luoghi dei personaggi, distinguendo l'Italia dal resto del mondo, allora

- conosciuto (tramite mappe anamorfiche che presentano superfici geografiche, opportunamente deformate in relazione alla presenza, o meno, di certe entità, quali personaggi e luoghi);
- all'analisi statistica (tramite lo studio della connessione, della regressione od analisi di varianza e della correlazione) dei personaggi, raggruppati (per tipi), così come sono disposti nei vari siti (gironi, cornici e cieli) dell'Inferno, del Purgatorio e del Paradiso, nonché dell'intera Commedia;
- alla costruzione di una speciale rete (cosiddetta di tipo "geodetico"), con il flusso di informazione che percorre l'intera Commedia (come dettagliato, più oltre, del tutto simile ad una rete di livellazione geometrica).

A riguardo, giova ricordare come nuova, tra le Applicazioni Geomatiche, siano l'interazione/ibridazione fra la Geomatica stessa e le Scienze Umane, in particolare l'interazione con la lettura di testi letterari ha un precedente nell'analisi del Decameron di Giovanni Boccaccio, nel settimo centenario della sua nascita: 1313-2013 (Bellone, et al., 2014). Tuttavia mentre quello studio si è limitato alla mappatura dei luoghi ed all'analisi statistica, questo lavoro, per la prima volta, disegna e studia una rete speciale (di tipo "geodetico", ovviamente per analogia formale/topologica e non per contenuto geocartografico).

Per contro, non si danno informazioni sulla vita di Dante Alighieri (Firenze, tra il 21 maggio ed il 21 giugno 1255 – Ravenna, 13/14 settembre 1321), né sulle sue opere, essendo arcinoto (e facilmente reperibile) tutto quanto riguarda il sommo poeta e comunque estraneo agli scopi di questo lavoro. Ancora non si fornisce un commento sul testo della Commedia, né sulle ipotesi cosmologiche alla base della stessa, dove questa è ampiamente commentata, quasi da subito, in parte, da Giovanni Boccaccio, ed interamente da Francesco di Bartolo da Buti, e studiata, nella sua struttura, da Antonio di Tuccio Manetti cui ha fatto seguito la conferma autorevole di Galileo Galilei (Treccani online – il portale del sapere).

Conclude l'introduzione una brevissima panoramica sulla cultura e la scienza del Medioevo, a cavallo del mondo di Dante Alighieri. Infatti un compendio della scienza antica è opera di Isidoro di Siviglia, come attestato da Beda il Venerabile, perché solo in età carolingia, si ha una ripresa in Europa, con la fondazione dell'Accademia Palatina (un suo direttore è Giovanni Scoto Eriugena, il primo dei grandi scolastici). Dopodiché dall'anno mille, le repubbliche marinare, con i viaggi e le crociate, ed i liberi comuni, con le corporazioni ed i commerci, avviano la circolazione del sapere. Dalle abbazie benedettine, il misticismo neoplatonico diventa cristiano: base per tornare a studiare gli antichi, e fare filosofia e scienza, come insegnato da Bernardo di Chartres.

La questione degli universali riapre il dibattito filosofico tra realisti platonici, dove reale è il mondo delle idee, e nominalisti aristotelici, dove questo è puramente convenzionale ed un contributo molto importante, è dato dalla conquista araba della Spagna moresca, dove a Cordova ha sede un importantissimo centro culturale, cresciuto sulla scorta di quelli di Alessandria, Damasco e Baghdad. Infatti con la diffusione dell'islam, si ha la traduzione dal siriano all'arabo di testi classici, già tradotti dal greco al siriano ed in persiano, dopo la chiusura dell'accademia ateniese. I massimi filosofi dell'epoca sono il persiano Avicenna e l'egiziano Maimonide, ed un contesto culturale libero permette di spaziare dal misticismo allo scetticismo, con un razionalismo capace valutare anche Democrito, dove la forma non deriva da un Dio, creatore e motore, bensì è intrinseca alla materia esistente di per sé. Averroé propone una comprensione dei testi aristotelici e li fa riscoprire in occidente (già da Toledo, nella Spagna cattolica della riconquista).

Così la divinità non è più esterna al mondo, ma è connessa al tutto esistente e la religione diventa filosofia panteista. Questa idea filosofica si ritrova anche nella cabala ebraica, con il neoplatonico Maimonide. Dopo gli approcci spagnoli, qualche francese ed alcune scomuniche papali, la metafisica di Aristotele è adottata dal tomismo, con Alberto Magno, Tommaso d'Aquino e Ruggero Bacone che apre poi all'empirismo. Questi filosofi sono due domenicani ed un francescano: due ordini mendicanti, spesso in contrasto tra loro, che intendono superare l'isolamento abbaziale benedettino, per

immergersi nella rinascente società civile. Alberto Magno rende compatibile la fisica di Aristotele con le scritture, mentre Tommaso d'Aquino inserisce la metafisica nel pensiero teologico-ecclesiastico. La reazione al tomismo, in nome del pensiero platonico-agostiniano, con Gioacchino da Fiore (cistercense) e Giovanni Fidanza da Bagnoregio (cioè fra Bonaventura, francescano), è notevole; dopodiché un punto d'equilibrio, tra razionalismo tomista ed empirismo, è cercato da Giovanni Duns Scoto, Guglielmo di Occam e Jean Buridan (cioè Giovanni Buridano).

In questo contesto, il mondo di Dante è un mondo culturalmente ricco. Infatti in ambito letterario, oltre Dante Alighieri, altri poeti fondano e diffondono il Dolce Stil Novo, fino alla soglia del primo Umanesimo: Guido Guinizzelli, Guido Cavalcanti, Lapo Gianni, Gianni Alfani, Cino de' Sigilbuldi da Pistoia e Dino Frescobaldi.; estendendo poi lo sguardo ad altri campi della cultura, oltre alla letteratura: la religione, la filosofia, la matematica, la musica, la pittura e la fisica (in particolare, con la medicina) hanno i loro rappresentanti rispettivamente in: Francesco d'Assisi (già Giovanni di Pietro di Bernardone), Tommaso d'Aquino, Leonardo Pisano (detto il Fibonacci, il primo ad usare la scrittura posizionale dei numeri, araboindiana, aggiungendo lo zero alle nove cifre), Jacopo dei Benedetti (detto Jacopone da Todi), Giotto (diminutivo di Ambrogio o Angiolo) di Bondone, Trotula de Ruggiero (della Scuola di Salerno, nel periodo del suo massimo splendore: una donna insigne, cosa quasi eccezionale, per allora, e comunque non molto favorita, neppure adesso).

2. I dati

In breve, si riassumono qui le differenti strutture dell'Inferno, con i suoi gironi (da Gerusalemme proprio al centro della terra), del Purgatorio, con le sue cornici (dalla spiaggia dell'Oceano Australe al Paradiso terrestre), e del Paradiso, con i suoi cieli (da quello della Luna all'empireo), seguendo la distinzione, già aristotelica e tolemaica, valida fin all'avvento della concezione copernicana eliocentrica (per altro, già trovata da Aristarco di Samo e riscoperta dai persiani, con secoli d'anticipo rispetto a Copernico) fra il mondo sublunare ed i cieli con l'empireo.

Le Tabelle 1, 2 e 3 riportano l'elenco dei personaggi, con il loro nome, la data e il luogo di nascita e di morte, una loro ricollocazione odierna (in termini di regioni, per l'Italia, e di stati altrove), e la loro professione. Le Tabelle 4, 5, 6 riportano l'elenco dei luoghi e la loro ricollocazione odierna (con gli stessi criteri).

A riguardo, corre il dovere di segnalare come molte informazioni, raccolte in queste prime sei tabelle, non siano entrate nelle analisi successive, in quanto estremamente frammentarie (e spesso incomplete, stante alcune difficoltà di interpretazione). Per contro, queste stesse informazioni permettono di effettuare quelle sintesi dei dati da cui prendono le mosse tanto le mappe anamorfiche, quanto l'analisi statistica.

Come noto, la Commedia consta 100 canti: 34 per l'Inferno e 33 per il Purgatorio ed il Paradiso. Dalla lettura integrale effettuata, si evidenziano 666 personaggi: 263 per l'Inferno, 206 per il Purgatorio e 197 per il Paradiso, così come 334 luoghi: 126 per l'Inferno, 108 per il Purgatorio e 100 per il Paradiso, cosicché la somma totale delle informazioni raccolte è pari a 1000.

Per mere esigenze editoriali, tutte le tabelle e le figure sono riunite, come in un'unica appendice alla fine dell'articolo.

3. Le mappe anamorfiche

La Tabella 7 mostra presenze, per regioni italiane ed altre nazioni, di personaggi (con i loro luoghi) e luoghi che si riferiscono, all'incirca, alle conoscenze geografiche già riportate sull'Ecumene di Tolomeo. con l'intera Europa (comprese le isole Britanniche e confusamente la Scandinavia, ovvero con il Mar Baltico congiunto al Mar Bianco e senza il Mar Glaciale Artico), il bacino del Mediterraneo (fino al Mar Nero ed al Mar Caspio), il Nord Africa (fino al Golfo di Guinea ed al Corno d'Africa), tutto il Medio Oriente e l'Asia che si affaccia sull'Oceano Indiano (con l'India, l'isola di Cylon / Sri Lanka e l'Indocina), oltre ad una terra immaginaria che congiunge l'Africa Orientale all'Asia Sudorientale: in questo, meglio Omero che chiude tutte le Terre emerse, allora note, con l'Oceano.

Sei mappe mostrano la distribuzione nelle regioni italiane (Figure 1, 2 e 3) ed anche tra gli Stati esteri (Figure 4, 5 e 6) dei personaggi (facendo riferimento ai loro luoghi) e dei luoghi (della Commedia). Le rappresentazioni delle informazioni acquisite sono fatte con mappe anamorfiche, opportunamente deformate, a partire da due basi geografiche, con carte equivalenti (o quasi):

- https://www.istat.it/it/archivio/104317, da fonte ISTAT, per l'Italia;
- http://thematicmapping.org/downloads/world_borders.php, da fonte Thematic Mapping, per il mondo (nello specifico, è interessante notare come l'Italia abbia un ruolo proprio prevalente, nella rappresentazione degli Stati esteri, cosicché si è scelto di dividere il suo peso per 20, per far risaltare gli Stati esteri non nulli, come presenze, ma decisamente molto meno citati dell'Italia stessa; in minor misura, questo è vero anche per la Grecia, soprattutto per la sua Mitologia ed il Mondo antico, per questo motivo, anche qui, si è scelto di dividere il suo peso per 10).

deformate avendo come discriminante:

- una variabile della massa, data dal numero dei riscontri, come riportato nelle suddette figure;
- un'altra rappresentazione per "densità", mettendo in relazione i riscontri con la superficie delle singole regioni e/o dei vari Paesi, con risultati meno significativi (ad esempio, esaltando le regioni dell'Asia, enormi, ma citate pochissimo) e qui omesse.

utilizzando un applicativo Java: "ScapeToad" (http://scapetoad.choros.place/).

I colori utilizzati, in questa rappresentazione anamorfica, come in tutte le cinque successive, non sono i tradizionali quattro colori (con cui si è dimostrato possibile rappresentare i dati, di una carta geografica, senza confusione di colore, tra le regioni adiacenti), ma rappresentano l'errore di "dimensionamento" del cartogramma (cartogram size error), ovvero la deformazione, funzione della distribuzione dei dati utilizzati, che hanno subito le geometrie, rispetto alla loro forma originale, come mostrato dalla scala grafica (dove i numeri, corrispondenti ai colori, sono così la percentuale di contrazione o dilatazione delle regioni).

4. L'analisi statistica

L'analisi statistica dei dati della Tabella 8 è qui condotta dapprima separatamente per l'Inferno, il Purgatorio ed il Paradiso e successivamente per l'intera Commedia, perché l'indagine stessa è meglio guidata, proprio se indirizzata sulla base dei risultati precedenti (Cunietti, 1977). D'altra parte, mentre l'analisi, separata per cantiche, è la classica analisi di tabelle (piane), l'analisi, dell'intera Commedia, è un'analisi 3D (cioè spaziale) che, come tale, richiede maggiori precauzioni, nel modo di procedere.

In entrambi i casi, si è proceduto prima alla classica analisi di varianza (Togliatti, 1976), ovvero della dipendenza funzionale (mediante il calcolo degli indici di Pearson) e poi con lo studio della connessione, cioè di una sola dipendenza vaga e generica, soprattutto data la scarsissima significatività della prima (mediante gli indici di Bonferroni). Nello specifico, la lettura delle seguenti tabelle presenta nove regioni (cerchi, cornici e cieli, rispettivamente per l'Inferno, il Purgatorio ed il Paradiso, così come sono narrati nel testo dantesco) e sette classi di personaggi (divinità, regnati, nobili, religiosi, altri, studiosi e donne, uguali per tutte e tre le cantiche, così come sono stati raggruppati, dagli autori di questo lavoro, le molteplici "professioni" di tutti i personaggi presenti, dove il loro ordine è cercato con l'intento di mettere le loro presenze in modo quanto più allineato possibile).

A riguardo, si badi che l'analisi riguardante l'intera Commedia prende in considerazione una struttura a tre strati (Crispino et al., 2008), dove le "righe" e le "colonne" sono le righe e le colonne di ciascuno strato (piano ed orizzontale), mentre sono chiamate "pile" tutte le colonne verticali che attraversano le celle (sovrastanti o sottostanti, secondo del verso) dei tre strati. La lettura della Tabella 9 evidenzia la pressoché totale assenza di dipendenza funzionale, ovvero l'assenza di una legge matematica sul comportamento in media (risultate pressoché tutte uguali tra loro) delle variabili prescelte (ovvero i nove siti in cui sono stati raggruppati l'Inferno, il Purgatorio ed il Paradiso, ed i sette gruppi di persone presenti).

Per contro, la loro disposizione non è affatto casuale (ovvero indipendente da una relazione, per quanto vaga e generica, fra i siti individuati ed i gruppi di persone), ma ha valori compresi fra il 25% circa nell'Inferno e nel Purgatorio, ed il 40% circa nel Paradiso. Nell'immediato prosieguo, si riporta la Tabella 10 con gli indici di Bonferroni (con la relativa legenda) adattati per l'analisi della connessione a tre vie (comunque di lettura immediata, benché poco nota ed usata).

Inoltre per quanto assolutamente non significativa, da un punto di vista statistico, del resto, in perfetto accordo con l'inconsistenza dell'analisi di varianza (già messa in evidenza in Tabella 9), il segno delle rette di regressione (Figura 7) e del coefficiente di correlazione, oppure la loro quasi nullità danno una curiosa indicazione sulla prevalente distribuzione dei personaggi nei vari siti (cioè gironi, cornici e cieli) dell'Inferno, del Purgatorio e del Paradiso.

Infatti come già detto in precedenza, avendo raggruppato i personaggi in divinità, regnanti, nobili, religiosi, altri (uomini), studiosi e donne (qui indistinte perché pochissime) solo nel Purgatorio è uniforme la distribuzione nelle cornici. Invece nell'Inferno, la distribuzione per cerchi riscontra una relativa maggioranza di donne, studiosi ed uomini qualsiasi, nei primi cerchi, ed una certa maggioranza di divinità, regnati, nobili e religiosi, negli altri cerchi (più bassi). Al contrario, nel Paradiso,

la distribuzione per cieli riscontra una relativa maggioranza divinità, regnati, nobili e religiosi, nei primi cieli, ed una certa maggioranza di donne, studiosi ed uomini qualsiasi, negli altri cieli (più alti). Senza voler entrare in discussioni, fuori luogo, questi numeri stanno a conferma di un guelfo bianco (cacciato da Firenze), divenuto poi un ghibellino fuggiasco, che assolve/promuove donne, studiosi ed uomini qualsiasi (a minori pene nell'Inferno ed a maggiore gloria nel Paradiso), mentre condanna/sminuisce divinità, regnanti, nobili e religiosi (a maggiori pene nell'Inferno ed a minor gloria nel Paradiso). Un commento, forse irriverente, ma non troppo (data la grande libertà dantesca, nella scrittura della sua Commedia), riconosce in tutto ciò "l'essersi tolto sassolini dalle scarpe", contro quei potenti che sono stati causa delle sue traversie.

5. Una rete speciale di tipo "geodetico"

Una speciale rete (di tipo "geodetico") è costituita dal flusso di informazione fra un personaggio od un luogo ad un altro personaggio e/o un altro luogo, come si presentano nella Commedia, in relazione alle loro "regioni" (intendendo qui: regione amministrativa, se riferito all'Italia, continente, se riferito all'Europa, Italia esclusa, e regione geografica, se riferito al resto del mondo, compresi i luoghi immaginari) ed alle loro epoche e professioni, se si tratta di personaggi, nonché ad altre relazioni tematiche generali (Tabella 11), così come di seguito riassunte:

- □ 1117 dati estesi, costituiscono altrettanti parametri della rete speciale, incognite della sua compensazione e colone della relativa matrice disegno:
 - □ 1000 tra personaggi e luoghi;
 - □ 100 canti (da 1001 a 1100) della Commedia;
 - □ 5 regioni (da 1101 a 1105) in corrispondenza ai personaggi ed ai luoghi citati;
 - 4 epoche (da 1106 a 1109) in corrispondenza ai personaggi citati;
 - □ 3 Cantiche (da 1110 a 1112) ed 1 Commedia (1113);
 - ☐ 2 idee generali, ovvero l'Idea di Mondo (1114) e l'Idea di Storia (1115);
 - □ 2 idee propriamente dantesche, ovvero il Mondo di Dante (1116) e Dio (1117).

Una precisazione, a riguardo: Dio è un concetto filosofico universale (anche nella sua negazione: atea), ma il Dio di Dante è essenzialmente il Dio cristiano, seppure mediato dall'interpretazione tomistica del pensiero di Aristotele, sul primo mobile (per questa ragione, è stato qui scelto come nodo vincolato che, come tale, ha nullo il cofattore della propria varianza).

- → 3853 legami tra i dati estesi, costituiscono altrettante osservazioni della rete speciale, equazioni della sua compensazione e righe della relativa matrice disegno:
 - 999 "passi" di Dante (talvolta accompagnato prima da Virgilio e poi da Beatrice) che incontra personaggi e/o sente parlare i personaggi e luoghi;
 - □ 1000 per collegare ciascun personaggio o luogo al proprio canto (da 1000 a 1999);
 - □ 1000 per collegare ciascun personaggio o luogo alla propria "regione" (da 2000 a 2999);
 - ☐ 621 per collegare ciascun personaggio alla propria epoca, ove possibile (da 3000 a 3620);

- 99 per collegare un canto al successivo (da 3621 a 3719).
- □ 100 per collegare ciascun canto alla sua Cantica (da 3720 a 3819);
- □ 34 per collegare opportunamente tra loro le cantiche, queste alla Commedia, le "regioni" all'Idea di Mondo, le epoche all'Idea di Storia (come dettagliatamente specificato nella Tabella 11), nonché queste tre sintesi al Mondo di Dante ed a Dio, a loro volta collegati fra loro (il tutto da 3820 a 3853).

Questa rete che, in Geodesia e Topografia, ha il suo equivalente in una rete di livellazione (ed in altre discipline una rete di differenze di potenziale o di flussi materiali od immateriali), se interamente connessa, ha un solo difetto di rango e, come tale, richiede un vincolo esterno su uno qualsiasi dei suoi nodi (tradizionalmente detti capisaldi, nelle reti di livellazione).

Forse questo è il punto più alto di ibridazione della Geomatica e di compromissione della Geomatica applicata, tramite una sua tecnica classica, cioè il trattamento delle osservazioni per la compensazione a minimi quadrati di reti geodetiche (Sansò, 1989), con altre e diverse discipline, cosicché questo modo di procedere si è voluto conglobare in un nuovo "capitolo" del SSD, detto di Applicazioni Geomatiche, proprio per evidenziare il contributo innovativo e le capacità di promozione, verso l'esterno che, nel caso specifico di questa applicazione è quello delle Scienze umane.

Infatti la conoscenza del nucleo centrale della Geodesia, Topografia Generale e Geomatica, e la presenza attiva nei campi della Geomatica Applicata mettono in atto prassi corrette e possono estendersi ai nuovissimi campi delle Applicazioni Geomatiche (del resto, queste applicano tecniche di rilevamento, trattamento e rappresentazione, proprio in altri ambiti cui sono generalmente estranei).

Le figure 8, 9, 10, 11 e 12 mostrano rispettivamente lo schema topologico/geodetico della compensazione relativamente, all'Inferno, al Purgatorio, al Paradiso (in tutte le tre cantiche, con tutti i dati raccolti), all'intera Commedia (prendendo in considerazione le tre cantiche, con tutti i loro cento canti) e lo schema "apicale" della rete (canti e cantiche, da collegare a "regioni" ed epoche, e poi alle Idee di Mondo e Storia, nonché al Mondo di Dante ed a Dio). A questo punto, andando certamente un po' oltre i compiti di questa compensazione, si può comunque evidenziale, dal contesto, come "questi" Inferno, Purgatorio e Paradiso siano costruzioni religiose, in voga nel Medioevo e, solo in parte, prese dal modello delle Sacre Scritture. Nello stesso contesto, proprio il Purgatorio può essere inteso come una novità medioevale, vera propria, non già ripresa dal Mondo antico (di conseguenza, a fortiori, estranea alle Sacre Scritture, come le Storie di Maria, ecc.). Ancora la corrispondenza canti-cieli, ovvero la cosmologia del Paradiso va oltre la costruzione celeste di Aristotele e Tolomeo, mentre per completezza, si dà notizia che moderni studi di topologia hanno descritto il Paradiso in uno spazio 4D (curiosità geometrica di sicuro interesse, ma assolutamente estranea ai fini di questo lavoro).

Invece la lettura della figura 11 è immediata, se presa a sé stante, mentre richiede un po' d'immaginazione, se sovrapposta alle Figure 8, 9 e 10. Infatti le figure mostrano l'insieme dei personaggi e dei luoghi, come Dante li incontra nel suo viaggio (attraverso l'Inferno, il Purgatorio ed il Paradiso), mettendoli in relazione con i canti di ciascuna delle cantiche (di cui si compone la Commedia dantesca); allora i 100 canti (34 per

l'Inferno e 33 per il Purgatorio ed il Paradiso) sono ripetuti (ed una costruzione 3D avrebbe certamente evitato questa ripetizione, ma è evidente come non si possa allegare una costruzione 3D ad un lavoro scritto) e, a loro volta, collegati alle tre cantiche. La forma a spirale (della figura), qui come nelle precedenti Figure 8, 9 e 10, serve ad economizzare spazio, rispetto ad un'unica linea retta.

Anche la lettura della figura 12 è immediata, se presa a sé stante, mentre richiede un po' d'immaginazione, se sovrapposta alla precedente Figura 11 ed alle Figure 8, 9 e 10. Înfatti rimandando al capoverso precedente, per la spiegazione delle quattro figure, tanto le cantiche (di cui ai numeri 1111, 1112 e 113), quanto le "regioni" (Italia, Europa, Nord Africa e Medio Oriente, resto del mondo e luoghi immaginari: di cui ai numeri 1101-1105) e le epoche (mitologia greco-romana mitologia ebraico-cristiana, mondo antico e medioevo: di cui ai numeri 1106-1109) sono ripetute ((ancora per esigenze grafiche) e collegate alla Commedia dantesca (1113), alle idee di Mondo (1114) e di Storia (1115), al mondo di Dante (1116) ed a "Dio" (1117), dove le virgolette precisano che questo Dio è quello di Dante. Pertanto le cinque figure sono un'unica costruzione 3D, quale è la rete speciale di tipo "geodetico" (di cui si presenta la "compensazione", mettendo in evidenza le propagazioni di varianza-covarianza, quali uniche operazioni possibili, in mancanza di dati e comunque di interesse specifico).

Allora andando oltre il dettaglio puntuale di carattere statisticomatematico e rivolgendosi invece, con preciso e specifico
riferimento, alla compensazione della suddetta rete speciale di
tipo "geodetico", le Figure 8, 9 e 10 mostrano le parti dello
schema "interno" della rete speciale, relative all'Inferno, al
Purgatorio ed al Paradiso, mentre le successive Figure 11 e 12
mostrano la parte della rete che riunisce le tre cantiche ed i loro
canti nella Commedia, insieme alle varie "regioni" con l'Idea di
Mondo ed alle varie epoche con l'Idea di Storia, a loro volta,
tutti collegati con il Mondo di Dante e quel Dio cristiano
(proprio della cultura del suo tempo); qui le rappresentazioni
degli schemi servono solo a mostrare la topologia della rete
speciale, perché nessuna geometria è presa in considerazione
(per quanto altresì già autorevolmente studiata da altri, come già
detto in precedenza).

Le righe di una tabella (o di una matrice disegno) corrispondono ai lati di un grafo, alle equazioni di un sistema ed alle osservazioni di una rete, seppure non date, in questo caso specifico, come il loro modello stocastico, in particolare, con tutti i pesi delle osservazioni (indipendenti tra loro), di conseguenza, assunti tutti pari ad uno; le colonne della stessa tabella corrispondono ai nodi di un grafo, alle incognite di un sistema ed ai parametri di una rete, seppure da non stimare. I gradi di libertà sono la differenza fra il numero delle righe ed il numero delle colonne, aumentata di uno, per effetto del vincolo imposto.

Prima di entrare nel merito del trattamento dei dati, propriamente detto, è importante constatare il rapporto oltre tre ad uno tra il numero di righe ed il numero di colonne, cosicché i gradi di libertà sono oltre due volte e mezzo il numero di colonne (questo fatto garantisce, in sé, il buon condizionamento del sistema da risolvere e l'alta affidabilità dello schema di misura, e deriva, di fatto, dalla notevole abbondanza di informazioni date e di relazioni che le collegano). A riguardo, le relazioni 1065–1111 (ovvero il canto 31 del Purgatorio con il Purgatorio stesso) e 1081–1112 e 1091–1112 (ovvero i canti 14 e 24 del Paradiso con il Paradiso stesso) potrebbero essere cancellate, perché nessun personaggio, né luogo è menzionato

in quei canti, ma è stata invece mantenuta per l'effettiva sequenzialità della Commedia.

Il trattamento specifico dei dati, raccolti in tabella e disposti nella matrice disegno, procede con la formazione della matrice normale ed il calcolo della matrice inversa e dei cofattori dei residui delle osservazioni. Gli elementi diagonali della matrice inversa darebbero le varianze dei parametri, se moltiplicati per la varianza dell'unità di peso (cioè per il quadrato di sigma zero), ed estratta la loro radice quadrata, gli scarti quadratici medi (sqm) dei parametri. Invece i cofattori dei residui delle osservazioni, moltiplicati per i corrispondenti pesi delle osservazioni (in questo caso specifico, la moltiplicazione è ovviamente inutile, essendo tutti i pesi pari ad uno), forniscono le ridondanze locali delle osservazioni stesse.

Il secondo risultato è definitivo e dà chiare indicazioni sull'affidabilità dello schema di misura, mentre il primo risultato è "orfano" del quadrato di sigma zero, mancando il problema dei valori delle osservazioni. Allora è necessario ricorrere alla standardizzazione degli scarti quadratici medi, per ottenere numeri compresi fra zero ed uno (Ricci, 1975). Pertanto come numeri compresi fra zero ed uno indicano osservazioni via, via più affidabili, così altri numeri, compresi fra uno e zero (a rovescio), indicano parametri via, via sempre più precisi, dove la precisione conferma anche il buon condizionamento del sistema da risolvere (mostrato anche da un numero di condizione prossimo ad uno).

La semplice lettura delle statistiche riassuntive (dell'analisi del flusso di informazioni nella Commedia) mostra come i dati: (personaggi e luoghi della Commedia, classificati e raggruppati, in base alle loro epoche (solo se possibile) e "regioni" (come già detto in precedenza), nonché disposti nei canti (talvolta solo nei siti: gironi, cornici e cieli) delle loro cantiche, non sia affatto un'accozzaglia di citazioni, fatte con gli intenti più vari, ma contiene un ben ragionato e valutato elenco di personaggi e luoghi che, secondo il percorso e gli intenti di Dante, parte dalla Gerusalemme terrestre ed arriva fino all'empireo di Dio.

La Tabella 12 riassume i risultati ottenuti, in termini di sqm standardizzati dei parametri e ridondanze locali delle osservazioni.

6. Conclusione

Brevi note conclusive ribadiscono come tutto il lavoro non aggiunga alcunché al testo della Commedia, ma mostri l'ampiezza ed il peso dello spazio geografico della Commedia e di Dante, segnali certe evidenze statistiche, come di dipendenze tra variabili doppie, presenti nel testo della Commedia, e numericamente il suo grande rigore, in termini di precisione ed affidabilità.

Invece da un punto di vista geomatico, questo lavoro prova ulteriormente grandi possibilità offerte dalle Applicazioni Geomatiche che, muovendosi anche in spazi tradizionalmente lontani, vanno molto oltre i vari campi tradizionali della Geomatica Applicata, dimostrando tutta la modernità e la "vivacità" proprio della Geomatica: una tecnica modernissima con un'antichissima nobile origine, nella geodesia che, insieme alla geometria ed all'astronomia, dà avvio alla scienza antica ed anticipa la nascita della filosofia classica.

Il calcolo statistico non aggiunge informazioni al testo della Commedia, ma quantifica numericamente quanto appena detto, con valori di precisione dei parametri (ovvero con gli scarti quadratici medi standardizzati di tutti i dati) dell'ordine di poche decine di millesimi e con valori di affidabilità delle osservazioni (ovvero con le ridondanze locali dei collegamenti fra un personaggio e un luogo con un altro personaggio e/o un altro luogo, nonché con tutte le sopraccitate informazioni accessorie relative alla struttura propria della Commedia, come pure alle "regioni" ed alle epoche, se possibile) sempre superiori a 50%. Infatti sqm standardizzati ben prossimi a zero e ridondanze locali superiori a 50% dimostrano un'eccellente precisione ed ottima affidabilità.

In questo caso, indispensabile, preziosissimo e fondamentale è il contributo dell'architetto e grafico (uno degli autori di questo lavoro) che ha prodotto le mappe anamorfiche e le altre immagini, poste a corredo delle elaborazioni statistiche e numeriche del presente lavoro. Senza piccoli, ma assai utili, contributi, anche le grandi idee (se pur queste sono grandi davvero) non valgono nulla. L'intera analisi non ha pretese di analizzare la Commedia, ma segnala semplicemente, da un punto di vista numerico, il rigore della costruzione dantesca. Per contro, da un punto di vista geomatico, il lavoro offre un ulteriore esempio delle possibilità offerte dalle Applicazioni geomatiche che attualmente riescono a muoversi in ambiti tradizionalmente lontani dalla Geomatica e dalla Geomatica Applicata, quali quelli delle Scienze umane.

In più, questo lavoro è svolto con la preziosa collaborazione degli studenti del triennio di una Scuola superiore che, grazie al loro docente di Italiano (uno degli autori di questo lavoro: a riguardo, gran merito è da attribuire a questo docente che ha ben coordinato tutto il lavoro dei suddetti studenti), hanno letto la Commedia e raccolto tutte le informazioni presentate ed elaborate; in questo contesto, è proprio necessario segnalare/ribadire qui le condizioni per un incontro fruttifero tra persone diverse (ovviamente necessario anche in ambiti più limitati, dove purtroppo sorgono spesso contrasti, incomprensioni e litigi): saper ben operare su un piano di parità, con spirito di tolleranza e nel reciproco rispetto (perché nessuno è necessario e tutti, solo così, sono davvero utilissimi).

Questo approccio è particolarmente interessante, perché intende offrire, proprio senza alcun atteggiamento di superiorità, il punto di vista dei geomatici, con le loro tecniche di misura, i loro modelli matematici ed i loro metodi di calcolo e di analisi, ad altre discipline, prendendo in considerazione altri dati, diversi da tutti quelli tradizionalmente affrontati dalle discipline del rilevamento (con volontà di confronto, con spirito di servizio e con voglia di imparare cose nuove). Così il punto d'incontro auspicato è, da un lato, allargare i confini delle Applicazioni Geomatiche, in questa direzione (come in altre verso le quali, si spera, si rivolga presto l'interesse di altri gruppi della comunità dei geomatici), ma da altro canto, trovare interlocutori interdisciplinari e multidisciplinari che propongano esempi, di sicuro interesse, valutino criticamente le metodologie impiegate ed i risultati ottenuti, e tengano aperto un dialogo costruttivo che faccia crescere criticamente e migliorare tutte/entrambe le comunità d'incontro.

Del resto, altre informazioni/relazioni (quali lessicali, sintattiche, semantiche e stilistiche, estranee agli scopi di questo lavoro) non potrebbero che migliorare ulteriormente i risultati (a tal proposito, giova ricordare che, benché il team degli autori sia composto da un geomatico (anche con funzioni di coordinatore della ricerca), un letterato ed un designer, questa è

essenzialmente una ricerca di Geomatica ed è presentata come un'Applicazione Geomatica nell'ambito delle Scienze umane).

D'Altra parte, alcune considerazioni conclusive sottolineano i limiti di questo lavoro. Infatti mentre è riportata la successione dei personaggi e dei luoghi, come la loro ripartizione in canti ed in cantiche, nonché i loro riferimenti alla storia ed alla geografia, nulla è detto per quanto riguarda connessioni tematiche e/o lessicali, oppure semantiche e/o sintattiche (a riguardo, sarebbe facile citare tre volte le "stelle", come parola finale di tutte e tre le cantiche, ma poi ... meglio avere coscienza dei limiti propri e di questa ricerca: altri potranno continuare meglio e con maggiore competenza/conoscenza dantesca).

"O frati," dissi, "che per cento milia perigli siete giunti a l'occidente, a questa tanto picciola vigilia d'i nostri sensi ch'è del rimanente non vogliate negar l'esperïenza, di retro al sol, del mondo sanza gente.

Considerate la vostra semenza: fatti non foste a viver come bruti, ma per seguir virtute e canoscenza".

Li miei compagni fec'io sì aguti, con questa orazion picciola, al cammino, che a pena poscia li avrei ritenuti; (Dante Alighieri, Commedia – Inferno, canto XXVI, versi 112-123).

BIBLIOGRAFIA ESSENZIALE

Alighieri D. (1993): La Divina Commedia (a cura di Tommaso Di Salvo). Zanichelli, Bologna.

Bellone T., Mussio L., Porporato C. (2014): Il trattamento delle osservazioni di Il Decamoron di Giovanni Boccaccio – nel 700 della sua nascita. Newton's Bulletin, Il Prof. Sansò e lo sviluppo della geodesia in Italia, Milano, p. VI/1-100.

Crispino et al. (2008): Pavimentazioni rigide aeroportuali – La ricostruzione di superfici con linee di discontinuità. Strade & Autostrade, n. 72, anno XII, n. 6, 2008.

Cunietti M. (1977): Le misure e il loro trattamento. CLUP, Milano.

Ricci F. (1975): Statistica ed elaborazione statistica delle informazioni. Zanichelli, Bologna.

Sansò F. (1989): Il trattamento statistico dei dati. CLUP, Milano.

Togliatti G. (1976): Fondamenti di statistica. Hoepli, Milano.

Treccani – il portale del sapere (enciclopedia: Treccani online)

Sitografia

http://scapetoad.choros.place/ http://thematicmapping.org/downloads/world_borders.php https://www.istat.it/it/archivio/104317. https://www.treccani.it/

INFERNO

Nome e cognome	Nascita	Morte	Luogo	Professione
I canto				
Anchise			Grecia	Padre di Enea
Camilla			Italia	Regina dei Volsci
Eurialo			Grecia	Guerriero troiano
Iulio (Giulio Cesare)	13/07/100 a.C (Roma)	15/03/44 a.C (Roma)	Italia	Politico romano
leone			inferno	fiera
lonza			inferno	fiera
lupa			inferno	fiera
Niso			Grecia	Guerriero troiano
Ottaviano Augusto	23/09/63 a.C (Roma)	19/08/14 d.C (Roma)	Italia	Politico romano
Publio Virgilio Marone	70 a.C. (Pietole)	19 a.C. (Brindisi)	Italia	Poeta latino
San Pietro	1 d.C.		Italia	Apostolo e primo Papa
Turno			Italia	Re dei Rutuli
II canto XXXIII canto				
AAAIII canto				
XXXIV canto				
Belzebù				Demonio (Lucifero)
Gaio Cassio Longino	87/86 a.C. (Roma)	42 a.C. (Roma)	Italia	Politico romano

Tabella 1. Personaggi dell'Inferno.

PURGATORIO

Nome e cognome	Nascita	Morte	Luogo	Professione
I canto				
Calliope	-	-	Grecia	Musa della poesia epica
Piche	-	-	Grecia	Figlie del re di Tessaglia Pierio
Catone	95 a.C. (Roma)	46 a.C. (Roma)	Italia	Politico e censore romano
Alighieri Dante	1265 (Firenze)	1321 (Ravenna)	Italia	Scrittore italiano
Marone Publio	70 a.C. (Andes, oggi	19 a.C. (Brindisi)	Italia	Poeta latino
Virgilio	Pietole)			
Marzia	Seconda metà del I	Seconda metà del I	Italia	Seconda moglie di Catone il
	sec a.C.	sec a.C.		censore
II canto				
XXXII canto				
				•••
XXXIII canto				
Temi	-	-	Grecia	Divinità pagana
Sfinge	-	-	Grecia	Mostro tebano
Naiade/Laiade	-	-	Grecia	Figlio di Laio, re di Tebe

Tabella 2. Personaggi del Purgatorio.

PARADISO

Nome e cognome	Nascita	Morte	Luogo	Professione
I canto				
Apollo			Grecia	Dio della poesia e delle arti
Beatrice (Bice Portinari)	1266 (Firenze)	1290 (Firenze)	Italia	Donna amata da Dante
Glauco			Grecia	Pescatore della Beozia che si trasforma in un dio marino
Marsia			Grecia	Satiro che sfida Apollo e muore scorticato
II canto XXXII canto				
XXXIII canto				
Sibilla Cumana			Cuma, Campania, Italia	
Nettuno			Grecia	Dio del mare

Tabella 3. Personaggi del Paradiso.

INFERNO

Luogo citato	Luogo odierno
I canto	
Italia	Italia
Roma	Roma, Lazio, Italia
Troia	Hissarlik, Turchia
II canto XXXIII canto	
XXXIV canto	
Nilo	Fiume Nilo, Egitto

Tabella 4. Luoghi dell'Inferno.

PURGATORIO

Luogo citato	Luogo odierno
I canto	
Cirra	Colle Cirra, Grecia (mitologico)
Parnaso	Monte Parnaso, Grecia (mitologico)
II canto XXXII canto	
XXXIII canto	
//	

Tabella 5. Luoghi del Purgatorio.

PARADISO

Luogo citato	Luogo odierno
I canto	
Utica	Utica, Tunisia
II canto XXXII canto	
	···
XXXIII canto	
Eufrates	Eufrate, fiume dell'Asia occidentale (Iraq)
Tigri	Tigri, fiume dell'Asia occidentale (Iraq)

Tabella 6. Luoghi del Paradiso.

<u>Inferno</u>	<u>Purgatorio</u>	<u>Paradiso</u>
Abruzzo: 1	Campania: 7	Calabria: 2 Regioni italiane
Campania: 1	Emilia: 26	Campania: 2
Emilia: 27	Lazio: 28	Emilia Romagna: 5
Lazio: 67	Liguria: 5	Lazio: 51
Liguria: 1	Lombardia: 6	Liguria: 1
Lombardia: 7	Marche: 3	Lombardia: 1
Marche: 5	Piemonte: 4	Marche: 4
Piemonte: 4	Puglia: 2	Piemonte: 1
Puglia: 1	Sardegna: 3	Puglia: 1
Sardegna: 4	Sicilia: 6	Sicilia: 5
Sicilia: 7	Toscana: 46	Toscana: 30
Toscana: 78	Trentino: 1	Umbria: 13
Trentino: 2	Umbria: 3	Val d'Aosta: 1
Veneto: 10	Veneto: 7	Veneto: 14
Italia 215	Italia 147	Italia 129
Arabia: 2	Belgio: 2	Albania: 1 Altre nazioni
Austria: 2	Egitto: 1	Algeria: 1
Belgio: 1	Etiopia: 1	Belgio: 1
Cipro: 2	Francia: 21	Cipro: 3
Croazia: 2	Germania: 7	Croazia: 2
Egitto: 5	Grecia: 76	Egitto: 7
Etiopia: 1	India: 2	Francia: 26
Francia: 12	Regno Unito: 1	Germania: 6
Germania: 1	Iraq: 6	Grecia: 47
Grecia: 93	Israele: 1	India: 2
India: 1	Libano: 1	Regno Unito: 3
Regno Unito: 3	Marocco: 1	Iraq: 2
Iraq: 2	Palestina: 22	Israele: 3
Israele: 2	Iran: 6	Lussemburgo: 1
Libia: 1	Repubblica Ceca: 1	Mauritania: 1
Macedonia: 1	San Marino: 1	Norvegia: 2
Marocco: 3	Siria: 2	Palestina: 29
Mauritania: 1	Spagna: 6	Portogallo: 4
Palestina: 15	Tunisia: 1	Repubblica Ceca: 1
Iran: 1	Turchia: 3	Russia: 1
Russia: 1		Serbia: 1
Spagna: 5	Paradiso terrestre: 1	Siria: 1
Tunisia: 3		Spagna: 13
Turchia: 1		Tunisia: 4
Ungheria: 1		Turchia: 1
		Ungheria: 2

Tabella 7. Sintesi dei luoghi e dei luoghi dei personaggi della Commedia.

Inferno 18

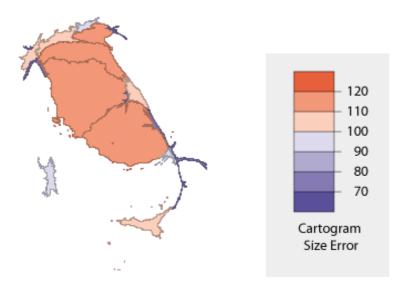


Figura 1. Mappe anamorfiche delle regioni italiane per l'Inferno.

Figura 2. Mappe anamorfiche delle regioni italiane per il Purgatorio.

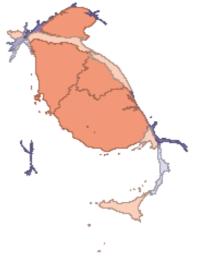


Figura 3. Mappe anamorfiche delle regioni italiane per il Paradiso.

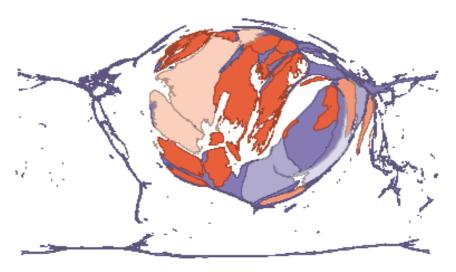


Figura 4. Mappa anamorfica degli altri Stati per l'Inferno.

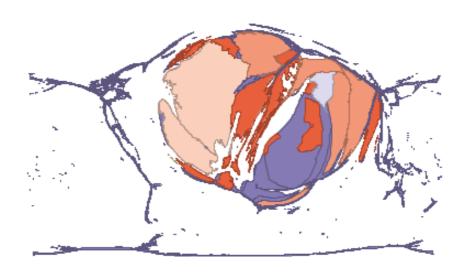


Figura 5. Mappa anamorfica degli altri Stati per il Purgatorio.

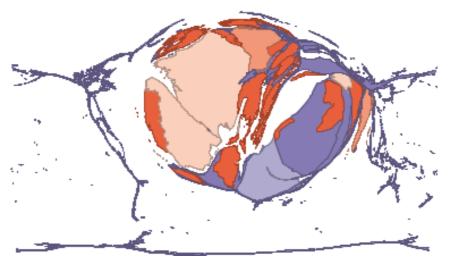


Figura 6. Mappa anamorfica degli altri Stati per il Paradiso.

COMMEDIA

Inferno	Divinità	Regnanti	Nobili	Religiosi	Altri	Studiosi	Donne	Totali
1° cerchio: 1/4	4	8	3	5	6	25	11	62
2° cerchio: 5	1	2	5	0	0	0	5	13
3° cerchio: 6	2	0	1	0	4	1	0	8
4° cerchio: 7	2	0	0	0	0	0	0	2
5° cerchio: 8-9	6	0	1	1	1	0	0	9
6° cerchio: 10-11	0	1	0	3	1	2	0	7
7° cerchio: 12/17	9	8	4	1	11	4	4	41
8° cerchio: 18/31	23	4	8	16	27	13	10	101
9° cerchio: 32/34	5	0	7	2	5	1	0	20
Totali	52	23	29	28	55	46	30	263
Purgatorio:	Divinità	Regnanti	Nobili	Religiosi	Altri	Studiosi	Donne	Totali
Antipurgatorio: 1/9	11	16	7	0	7	8	13	62
1ª cornice: 10/12	2	7	1	1	4	6	4	25
2 ^a cornice: 13/15	1	1	4	1	10	0	2	19
3 ^a cornice: 16	0	0	1	0	3	0	1	5
4 ^a cornice: 17/19	1	3	2	2	2	0	4	14
5 ^a cornice: 20-21-22	5	7	2	8	2	10	7	41
6 ^a cornice: 23/25	5	1	0	3	4	1	3	17
7 ^a cornice: 26-27	2	0	0	0	1	2	3	8
Paradiso terrestre: 28/33	7	2	0	2	0	4	0	15
Totali	34	37	17	17	33	31	37	206
Paradiso:	Divinità	Regnanti	Nobili	Religiosi	Altri	Studiosi	Donne	Totali
1° cielo: 1/5	9	1	2	7	4	1	4	28
2° cielo: 6-7	1	7	3	1	10	1	5	28
3° cielo: 8-9	5	5	0	4	0	1	3	18
4° cielo: 10/14	3	0	0	21	0	9	1	34
5° cielo: 15/18	2	3	10	4	7	3	3	32
6° cielo: 19-20	1	17	0	0	0	0	0	18
7° cielo: 21-22	2	0	0	3	0	0	1	6
8° cielo: 23/27	1	0	1	11	0	0	2	15
9° cielo: 28/33	3	0	0	7	0	1	7	18
Totali	27	33	16	58	21	16	26	197
Totali generali	113	93	62	103	109	93	93	666

Tabella 8. Sintesi dei personaggi della Commedia.

ANOVA A DUE VIE

0.116

0.140 0.133

Indici di Pearson per l'Inferno per colonne

(<u>Legenda:</u> per color per righe misto)

0.044

0.113 0.086

Indici di Pearson per il Purgatorio

(<u>Legenda:</u> per colonne

per righe misto)

0.213

0.122 0.155

Indici di Pearson per il Paradiso per colonne

(<u>Legenda:</u> per cole per righe misto)

ANALISI DELLA CONNESSIONE A DUE VIE

0.267

(<u>Legenda:</u>	0.265 <u>Indici di Bonferr</u> per righe	0.266 oni per l'Inferno per colonne misto)
		0.269
(<u>Legenda:</u>	0.262 Indici di Bonferror per righe	0.265 ni per il Purgatorio per colonne misto)
		0.419
(<u>Legenda:</u>	0.415 Indici di Bonferro	0.417 oni per il Paradiso per colonne misto)

ANALISI DELLA CONNESSIONE A TRE VIE

0.377

0.360

0.366

(Legenda:

otation

(Legenda:

otation

indici di Bonferroni per la Commedia

misto

per righe

per colonne

per pile)

Tabella 9. Analisi statistica della Tabella 8.

RETTE DI REGRESSIONE ED ANALISI DELLA CORRELAZIONE

-0.136 4.790 -0.203 0.041

Coefficiente angolare, intercetta, coefficiente di correlazione e suo quadrato per l'Inferno

-0.015 4.124 -0.019 0.0004

Coefficiente angolare, intercetta, coefficiente di correlazione e suo quadrato per il Purgatorio

0.072 3.523 0.100 0.010

Coefficiente angolare, intercetta, coefficiente di correlazione e suo quadrato per il Paradiso

Tabella 10. Ulteriore analisi statistica della Tabella 8.

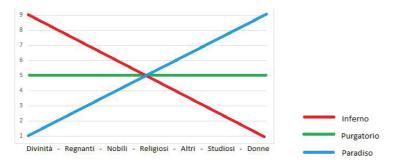


Figura 7. Rette di regressione. (le cui pendenze sono ovviamente arbitrarie non essendo numeri i nomi dei personaggi)

				FUSSO D	I INFORM	IAZIONI	NELLA (COMMEDIA			
Legenda: A B C			B numero antecedente nel flusso di informazioni (come il punto indietro di una livellazione)								
		E	numero delle				1101 1102 1103 1104	Italia Europa (Ita Nord Afric Resto del n	a e Medio C		
		F	numero delle	epoche (co	llegate ad A	A, se A pers	1105	Luoghi imr con 621 colle	naginari gamenti su greco–roma: ebraico–cris	na	riginari):
A 1	В	C	D 1001	E 1105	F 1107	A 501	B 500	C 501	D 1044	E 1103	F 1108
2	1	2	1001	1105	1107	502	501	502	1044	1101	1108
500	499	500	1044	1102	1108	1000	999	1000	1100	1105	1106
100 righ	e collegand	o i canti a	da 1 da 1	ne: Inferno 1001 (canto 1035 (canto 1068 (canto	(1110), Purg I) – 1110 a I) – 1111 a I) – 1112 a	gatorio (11 1034 (can 1067 (can 1100 (can	11) e Para to XXXIV to XXXII	V) – 1110 I) – 1111			
2 righe	collegano u	na cantic	a alla successiv	/a: 1110 – 1	1111 e 1111	-1112					
5 righe registrano connessioni geografiche: Italia (1101) – Europa (1102) Italia (1101) – Nord Africa e Medio Oriente (1 Europa (1102) – Nord Africa e Medio Oriente Europa (1102) – Resto del Mondo (1104) Nord Africa e Medio Oriente (1103) – Resto de						(1103)	04)				
2 righe collegano luoghi immaginari e mitologie: Luoghi immaginari (1105) – Mitologia greco/romana (1106) Luoghi immaginari (1105) – Mitologia ebraico/cristiana (1107)											
6 righe 1	registrano c	continuità	Mit Mit Mit Mit Mit	ologia grec ologia grec ologia ebra ologia ebra	o/romana (1 o/romana (1	1106) – Mo 1106) – Mo a (1107) – a (1107) –	ondo antic edioevo (1 Mondo ar Medioevo	109) ntico (1108)	a (1107)		
3 righe o	collegano le	e tre canti	iche (1110, 111	1 e 1112) a	ılla Comme	dia (1113)					

- 3 righe collegano le tre cantiche (1110, 1111 e 1112) alla Commedia (1113) 5 righe collegano le "regioni" (1101, 1102, 1103, 1104 e 1105) all'Idea di Mondo (1114) 4 righe collegano le epoche (1106, 11107, 1108 e 1109) all'Idea di Storia (1115)
- 3 righe collegano la Commedia e le Idee di Mondo e Storia (1113, 1114 e 1115) all'epoca di Dante (1116)
- 3 righe collegano la Commedia, l'Idea di Mondo e l'Idea di Storia (1113, 1114 e 1115) a Dio (1117)
- 1 riga collega l'epoca di Dante (1116) a Dio (1117, assunto come nodo vincolato)

ovvero come già detto in precedenza, un totale di 3853 righe (cui corrispondono 1117 colonne, 1 vincolo e 2737 gradi di libertà)

Tabella 11 – Flusso di informazioni nella Commedia

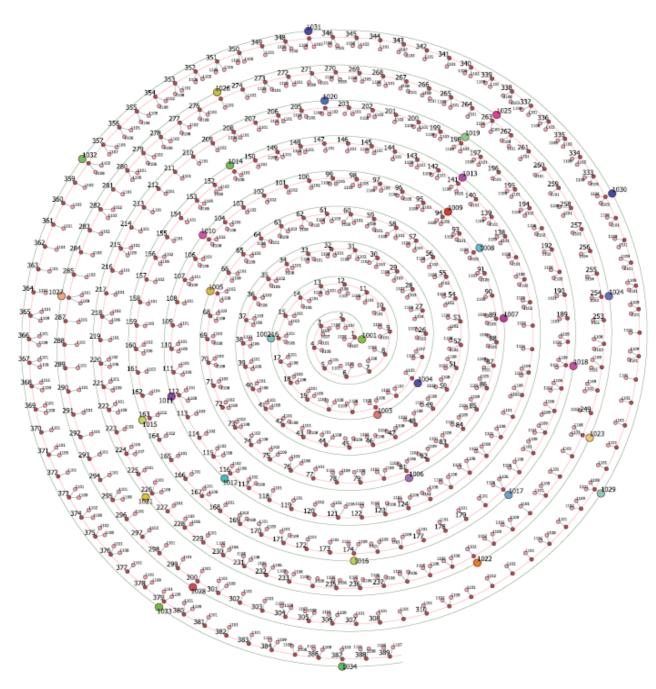


Figura 8. Schema della rete speciale relativo all'Inferno.

Inferno: cerchi e canti

1° cerchio: 1-2-3-4

2° cerchio: 5

3° cerchio: 6

4° cerchio: 7

5° cerchio: 8-9

6° cerchio: 10-11

7° cerchio: 12-13-14-15-16-17

8° cerchio: 18-19-20-21-22-23-24-25-26-27-28-29-30-31

9° cerchio: 32 -33-34

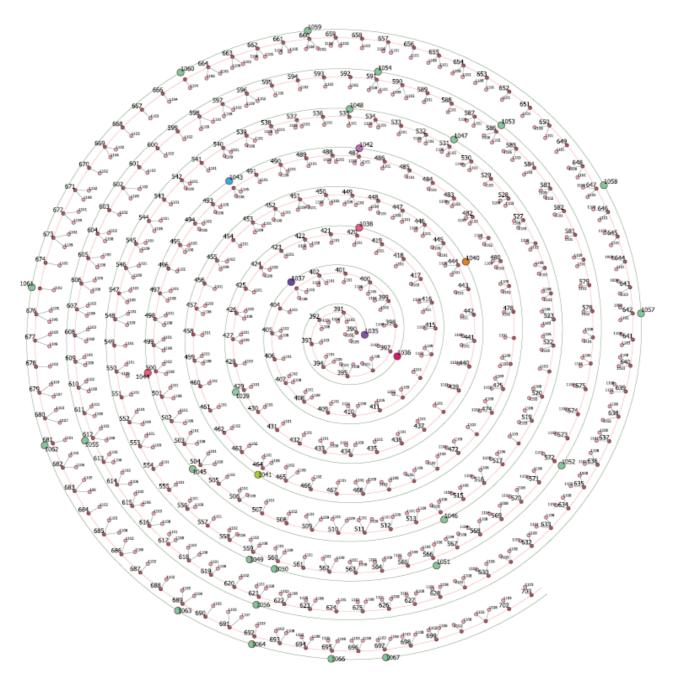


Figura 9. Schema della rete speciale relativo al Purgatorio.

Purgatorio: cornici (compreso l'Antipurgatorio) e canti

Antipurgatorio: 1-2-3-4-5-6-7-8-9

1ª cornice: 10-11-12 2ª cornice: 13-14-15 3ª cornice: 16 4ª cornice: 17-18-19 5ª cornice: 20-21-22 6ª cornice: 23-24-25 7ª cornice: 26-27

Paradiso terrestre: 28-29-30-31-32-33

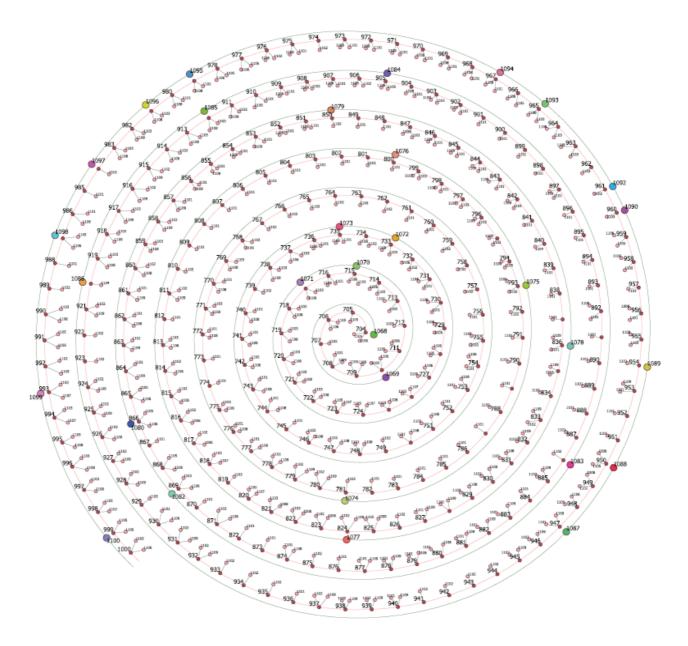


Figura 10. Schema della rete speciale relativo al Paradiso.

Paradiso: cieli e canti

1° cielo: 1-2-3-4-5

2° cielo: 6-7

3° cielo: 8-9

4° cielo: 10-11-12-13-14

5° cielo: 15-16-17-18

6° cielo: 19-20

7° cielo: 21-22

8° cielo: 23-24-25-26-27

9° cielo: 28-29-30-31-32-33

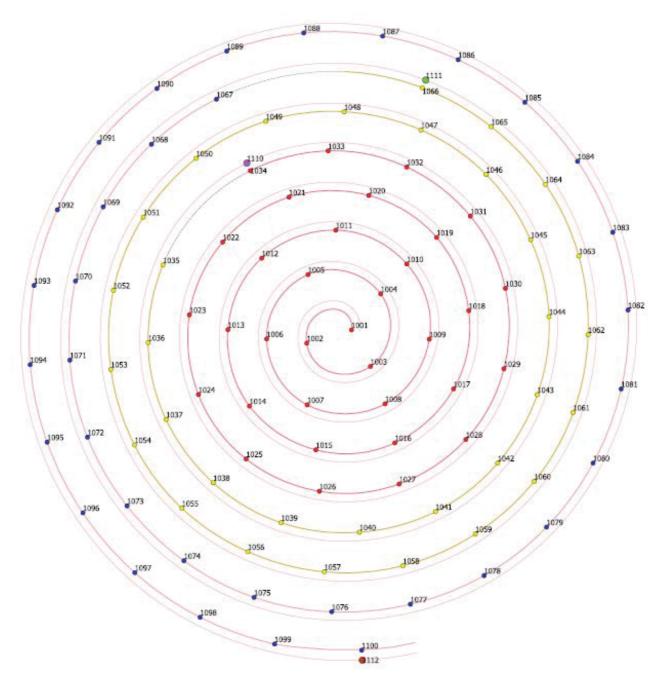


Figura 11. Schema "apicale" della rete (canti e cantiche, da collegare a "regioni" ed epoche, e poi alle Idee di Mondo e Storia, nonché al Mondo di Dante ed a Dio.

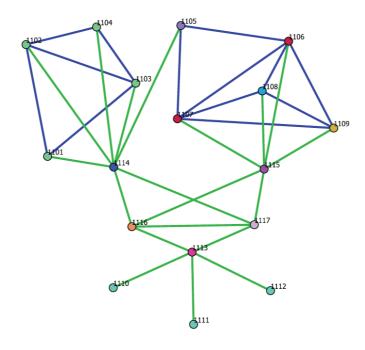


Figura 12. Schema "apicale" della rete: "regioni", epoche (con i loro collegamenti in azzurro), Idee di Mondo e di Storia, Mondo di Dante e Dio (con tutti gli altri collegamenti in verde)

ANALISI DEL FLUSSO DI INFORMAZIONI NELLA COMMEDIA

Legenda:

A		
A	numero	progressivo

B scarto quadratico medio (sqm)

C scarto quadratico medio standardizzato

D numero antecedente nel flusso di informazioni

E numero conseguente nel flusso di informazioni

F ridondanza locale

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{A}	D	\mathbf{E}	\mathbf{F}	\mathbf{A}	D	\mathbf{E}	\mathbf{F}
1	0.795	0.031	1	2	0.626	1285	1027	286	0.730	2569	1101	570	0.758
2	0.767	0.030	2	3	0.653	1286	1027	287	0.687	2570	1101	571	0.693
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1116	0.632	0.024	1012	117	0.755	2400	1101	401	0.693	3684	1064	1065	0.552
1117	0.000	0.000	1012	118	0.700	2401	1101	402	0.763	3685	1065	1066	0.562
1118			1012	119	0.697	2402	1103	403	0.764	3686	1066	1067	0.705
•••			•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
1284			1026	285	0.676	2568	1104	569	0.718	3852	1115	1117	0.620
										3853	1116	1117	0.600

ISTOGRAMMA DEGLI SQM STANDARDIZZATI

Mediana e mav 0.030 0.002

Estremi di quartili 0.023 0.028 0.030 0.031 0.034

Media e (loro) sqm 0.030 0.001

ISTOGRAMMA DELLE RIDONDANZE LOCALI

Mediana e mav 0.710 0.067

Estremi dei quartili 0.991 0.778 0.710 0.643 0.516

Media e (loro) sqm 0.714 0.052

Tabella 12. Analisi del flusso di informazioni e loro statistiche riassuntive nella Commedia.